Eta Carinae could be as large as 180 times the radius of the Sun, and its surface temperature is 36,000-40,000 Kelvin. Just for comparison, 40,000 Kelvin is about 72,000 degrees F. So it's the blue hypergiants, like Eta Carinae, which are probably the hottest stars in the Universe.
Answer:
Heat travels faster in solids.
Heat travels slower in gases.
Explanation:
Answer:
44
Explanation:
Given that :
Mass of solute = Mass of urea = 16g
Mass of water = 20g
Mass of solution = (mass of solute + mass of solvent) = (mass of urea + mass of water) = (16g + 20g) = 36g
Percentage Mass = (mass of solute / mass of solution) * 100%
Percentage Mass = (16 / 36) * 100%
Percentage Mass = 0.4444444 x 100%
Percentage Mass = 44.44%
Percentage Mass = 44%
The balanced chemical equation for the production of chromium metal from the reaction of chromium(ll) nitrate reacts with a strip of zinc is:
3 Zn + 2 Cr(NO₃)₃ → 2 Cr + 3 Zn(NO₃)₂
This is a redox reaction, which <u>is a chemical reaction in which one or more electrons are transferred between the reagents</u>, causing a change in their oxidation states. In the proposed reaction, Cr oxidation state goes from +3 to 0, becoming metallic chromium, while Zn goes from being Zn⁰ to Zn²⁺.
<u>The mass of chromium metal produced in the above reaction will be,</u>
425.0 mL x
x
x
x
= 5.52 g
So, the mass of chromium metal produced when 425.0mL of 0.25M chromium(ll) nitrate reacts with a strip of zinc that remains in excess is 5.52 g of Cr.
Answer:
285g of fluorine
Explanation:
To solve this problem we need to find the mass of Freon in grams. Then, with its molar mass we can find moles of freon and, as 1 mole of Freon, CCl₂F₂, contains 2 moles of fluorine, we can find moles of fluorine and its mass:
<em>Mass Freon:</em>
<em>2.00lbs * (454g / 1lb) = </em>908g of Freon
<em>Moles freon -Molar mass: 120.91g/mol- and moles of fluorine:</em>
908g of Freon * (1mol / 120.91g) =
7.5 moles of freon * (2moles Fluorine / mole Freon): 15 moles of fluorine
<em>Mass fluorine -Atomic mass: 19g/mol-:</em>
15 moles F * (19g / mol) =
<h3>285g of fluorine</h3>