1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
marusya05 [52]
2 years ago
7

PLS HELP DUE TODAY 11:59

Mathematics
1 answer:
umka21 [38]2 years ago
5 0
Could you provide image of both houses? Brainly crops ur pics to be a square so it only shows half of the brick house :).
You might be interested in
Cual es resultado de 8.5 × 10^4 - 3.0 × 10^3
Veronika [31]
Simplify 10^4 to 10000

8.5x10000-3.0x10^3

Simplify 8.5x*10000 to 85000x
85000x-3.0*10^3
Simplify 3.0x10^3 to 3*10^3
Answer 85000x-3*10^3
5 0
3 years ago
Please help me on this because I'm not sure if it's a decimal or not
anzhelika [568]
THERE IS NO PICTURE TO ANSWER THIS
3 0
3 years ago
f(x) = 3 cos(x) 0 ≤ x ≤ 3π/4 evaluate the Riemann sum with n = 6, taking the sample points to be left endpoints. (Round your ans
Kruka [31]

Answer:

\int_{0}^{\frac{3 \pi}{4}}3 \cos{\left(x \right)}\ dx\approx 3.099558

Step-by-step explanation:

We want to find the Riemann sum for \int_{0}^{\frac{3 \pi}{4}}3 \cos{\left(x \right)}\ dx with n = 6, using left endpoints.

The Left Riemann Sum uses the left endpoints of a sub-interval:

\int_{a}^{b}f(x)dx\approx\Delta{x}\left(f(x_0)+f(x_1)+2f(x_2)+...+f(x_{n-2})+f(x_{n-1})\right)

where \Delta{x}=\frac{b-a}{n}.

Step 1: Find \Delta{x}

We have that a=0, b=\frac{3\pi }{4}, n=6

Therefore, \Delta{x}=\frac{\frac{3 \pi}{4}-0}{6}=\frac{\pi}{8}

Step 2: Divide the interval \left[0,\frac{3 \pi}{4}\right] into n = 6 sub-intervals of length \Delta{x}=\frac{\pi}{8}

a=\left[0, \frac{\pi}{8}\right], \left[\frac{\pi}{8}, \frac{\pi}{4}\right], \left[\frac{\pi}{4}, \frac{3 \pi}{8}\right], \left[\frac{3 \pi}{8}, \frac{\pi}{2}\right], \left[\frac{\pi}{2}, \frac{5 \pi}{8}\right], \left[\frac{5 \pi}{8}, \frac{3 \pi}{4}\right]=b

Step 3: Evaluate the function at the left endpoints

f\left(x_{0}\right)=f(a)=f\left(0\right)=3=3

f\left(x_{1}\right)=f\left(\frac{\pi}{8}\right)=3 \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}=2.77163859753386

f\left(x_{2}\right)=f\left(\frac{\pi}{4}\right)=\frac{3 \sqrt{2}}{2}=2.12132034355964

f\left(x_{3}\right)=f\left(\frac{3 \pi}{8}\right)=3 \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}=1.14805029709527

f\left(x_{4}\right)=f\left(\frac{\pi}{2}\right)=0=0

f\left(x_{5}\right)=f\left(\frac{5 \pi}{8}\right)=- 3 \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}=-1.14805029709527

Step 4: Apply the Left Riemann Sum formula

\frac{\pi}{8}(3+2.77163859753386+2.12132034355964+1.14805029709527+0-1.14805029709527)=3.09955772805315

\int_{0}^{\frac{3 \pi}{4}}3 \cos{\left(x \right)}\ dx\approx 3.099558

5 0
3 years ago
Complete the equivalent equation for –7x – 60 = x2 + 10x.
cupoosta [38]

Answer:

x = -5

x = -12

Step-by-step explanation:

- 7x - 60 = x^2 + 10x

add 7x to both sides

x^2 + 17x = -60

add 60 to both sides

x^2 + 17x + 60 = 0

factorise quadratic

(x + 12) (x + 5) = 0

<em>x = -12</em>

<em>x = -12x = -5</em>

6 0
3 years ago
What is the sum of 347+645=
iren [92.7K]

Answer:

347 + 645 = 992

Step-by-step explanation:

 347

<u>+645</u>

 922

7 0
2 years ago
Other questions:
  • Evaluate: 100(1 - 0.02)10.<br><br> Round to the nearest tenth.
    13·1 answer
  • What's .34 as a fraction
    15·2 answers
  • What is 9:09 minus 8:22
    14·1 answer
  • In circle C, r = 32 units.<br> What is the area of circle C?
    9·1 answer
  • I need helps with this (click the picture to see it clearer
    14·2 answers
  • Does anyone know how to answer this question I'm having a lot of trouble with it?
    12·1 answer
  • Solve equation by using the quadratic formula.
    8·1 answer
  • Using the picture above what is the arc length of AB to the nearest hundredths?
    5·1 answer
  • Sum of the exterior angles of polygons
    9·1 answer
  • Triangle N P O is shown. Line O N extends through point M to form exterior angle P N M. Angle N P O is 38 degrees. Angle P O N i
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!