Answer:
20 N.
Explanation:
The following data were obtained from the question:
Mass of block B (m) = 2 Kg
Acceleration due to gravity (g) = 10 m/s²
Gravitational force (F) =..?
Force is simply defined as the product of mass and acceleration i.e
Force = mass (m) × acceleration (a)
F = ma
Thus, we can say that the gravitational force on block B will be the product of the mass of block B and acceleration due to gravity i.e
Gravitational force (F) = mass of block B (m) × acceleration due to gravity (g)
F = mg
Mass of block B (m) = 2 Kg
Acceleration due to gravity (g) = 10 m/s²
Gravitational force (F) =..?
F = mg
F = 2 × 10
F = 20 N
The, the gravitational force exerted on block B is 20 N
I think it's something like electrons don't attract, cuz you know the saying "Opposites attract." Cause electrons are negative... Ahaha... sorry, I don't know the answer.
I would say a because i just had this
Answer:
11.5 meters
Explanation:
73.3°, 12.0m
The y-component is the magnitude of the vector times the sine of the angle measured from the +x axis.
y = 12.0 sin (73.3°)
y = 11.5
The y-component is 11.5 meters.
Answer:
The correct answer is option B)
Explanation:
Considering the given question as -
The space shuttle is located exactly half way between the earth and the moon. Which statement is true regarding the gravitational pull on the shuttle? A) The moon pulls more on the shuttle. B) The earth pulls more on the shuttle. C) Both are equal due to equal distances. D) Both are equal due to the mass of the shuttle.
We know that gravitational pull (F) between any two bodies of mass
and
is given by -
F =
where 'r' is the distance between the two bodies.
Let ,
: Mass of the earth
: Mass of the moon
m : Mass of the satellite
: Distance of satellite from earth
: Distance of satellite from moon
Given that
=
Let
=
=r
Force on satellite by the earth is -
= 
Force on satellite by the moon is -
= 
∵ Mass of earth (
) > Mass of moon (
)
∴
> 
∴ The gravitational pull of earth on satellite is more than that of the moon.