Answer:
[Ca²⁺] = 1M
[NO₃⁻] = 2M
Explanation:
Calcium nitrate dissociates in water as follows:
Ca(NO₃)₂ ⇒ Ca²⁺ + 2NO₃⁻
The moles of Ca²⁺ can be found using the molar relationship between Ca(NO₃)₂ and Ca²⁺
(0.100mol Ca(NO₃)₂) (Ca²⁺ /Ca(NO₃)₂) = 0.100 mol Ca²⁺
The concentration of Ca²⁺ is then:
[Ca²⁺] = n/V = (0.100mol)/(100.0mL) x (1000ml)/(1L) = 1M
Similarly, moles of NO₃⁻ can be found using the molar relationship between Ca(NO₃)₂ and NO₃⁻:
(0.100mol Ca(NO₃)₂) (2NO₃⁻/Ca(NO₃)₂) = 0.200 mol NO₃⁻
The concentration of NO₃⁻ is then:
[NO₃⁻] = (0.200mol)/(100.0mL) x (1000ml)/(1L) = 2M
Ok so the gravitational force the moon exerts on earth is very small. The ocean, however, is affected by it. How gravity works (in a simplistic sense) is that, when you are closer to something, the force is stronger. So, when the moon is close to Earth (at Perigee) the force of gravity is stronger. So the moon pulls the water more towards itself. This results in higher waves occurring when the moon is closer (at perigee) than at apogee.
<span>At room temperature and atmospheric pressure, nothing happens when the two gasses are mixed. However, at high temperature and pressure (450C, 200atm), in the presence of an iron oxide catalyst, the production of ammonia is thermodynamically advantageous.</span>
I think the correct answer would be because copper has a lower activity than hydrogen and cannot replace the bonds in it. Substances that are not oxidizing do not react with copper since the redox potentials are very low. Hope this answers the question.
Answer:
1.<em>C</em><em>.</em><em>Keeps</em><em> </em><em>blood</em><em> </em><em>sugar</em><em> </em><em>low</em>
Explanation:
i just know number 1 am nt sure of number 2