The answer is 100%
let me know if you want an explanation
Answer:
(a) 
(b) 
(c) 
(d) 
(e) 
Explanation:
To calculate de pH of an acid solution the formula is:
![pH = -Log ([H^{+}]) = 1](https://tex.z-dn.net/?f=pH%20%3D%20-Log%20%28%5BH%5E%7B%2B%7D%5D%29%20%3D%201)
were [H^{+}] is the concentration of protons of the solution. Therefore it is necessary to know the concentration of the protons for every solution in order to solve the problem.
(a) and (c) are strong acids so they dissociate completely in aqueous solution. Thus, the concentration of the acid is the same as the protons.
(b) and (e) are strong bases so they dissociate completely in aqueous solution too. Thus, the concentration of the base is the same as the oxydriles. But in this case it is necessary to consider the water autoionization to calculate the protons concentration:
![K_{w} =[H^{+} ][OH^{-}]=10^{-14}](https://tex.z-dn.net/?f=K_%7Bw%7D%20%3D%5BH%5E%7B%2B%7D%20%5D%5BOH%5E%7B-%7D%5D%3D10%5E%7B-14%7D)
clearing the ![[H^{+} ]](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%20%5D)
![[H^{+} ]=\frac{10^{-14}}{[OH^{-}]}](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%20%5D%3D%5Cfrac%7B10%5E%7B-14%7D%7D%7B%5BOH%5E%7B-%7D%5D%7D)
(d) is a weak base so it is necessary to solve the equilibrium first, knowing 
The reaction is
→
so the equilibrium is

clearing the <em>x</em>

![x=[H^{+}]=4.93x10^{-10}](https://tex.z-dn.net/?f=x%3D%5BH%5E%7B%2B%7D%5D%3D4.93x10%5E%7B-10%7D)
Improper or incomplete usage of citations can lead to plagiarism.
Without proper usage of citations, teachers or whoever is looking over your work, may think because you do not hold acceptable citations, that they will think it is plagiarized. Plagiarism is taking another person's work or ideas without citing it. Citation or direct quotation could save you from plagiarism.
General principle of solubility is 'like dissolves like'

is an ionic compound, wherein the constituent ions (

and

) are held by electrostatic forces of interaction.
Such ionic compounds are soluble in polar solvents.
Among the solvent mentioned in question, water (

) has maximum polarity. Hence,

is most likely to dissolve in