I don’t think you can :((
If the mass of the sun is 1x, at least one planet will fall into the habitable zone. if I place a planet in orbits 1, 3, 5 , 6 and all planets will orbit the sun successfully.
<h3>
What are planets?</h3>
Planets are the large spherical shaped objects that rotate about the Sun in the elliptical orbits.
Planets are shaped from Planetary cloud. The dust storm and gases gathers under its own weight. The dense matter beginnings pivoting at high paces and accumulates more mass. The center structures, the star and rest of it ultimately levels into a curved plate from which planet is formed.
Thus, if I place a planet in orbits 1, 3, 5 , 6 and all planets will orbit the sun successfully.
Learn more about planets.
brainly.com/question/14581221
#SPJ1
Kinetic energy = 1/2 * mass * velocity^2
In this case,
KE = 1/2 * 1569 kg * (15 (m/s))^2 = 176,5 kN
Wouldn't mass stay the same and acceleration increase or am I mistaken?
The answer is λ₂ = 6.48 cm or 6.52 cm.
The out-of-tune guitar may have a wavelength between "6.48 cm" and "6.52 cm."
fb = |f2 − f1|
f₁ = 343/0.064
= 5276Hz
f₂ = 5276.9 Hz ± 17 Hz
f₂ = 5293.9 Hz or 5259.9 Hz
Now, calculating the possible wavelengths:
λ = 343/ 5259.9 or 343/ 5293.9
λ₂ = 6.48 cm or 6.52 cm
<h3>Why is beat frequency important?</h3>
When two waves with almost identical frequencies traveling in the same direction collide at a certain location, beats are produced. The opposing beneficial and harmful disruption causes the sound to alternatively be loud and weak whenever two sound waves with different frequencies reach your ear. This is referred to as beating.
The entire value of the frequency difference between the two waves is the beat frequency.
The following formula yields the beat frequency:
fb = |f2 − f1|
Learn more about beat frequency here:
brainly.com/question/14705053
#SPJ4