Answer:
I have a screenshot of this.
Explanation:
Given:
mass: 100 kg
height: 500 m
1 kJ = 1000 J
gravity = 9.8 m/s²
velocity before impact: v = √2gh ; v = √2 * 9.8 m/s² * 500 m ; v = 98.99494 m/s
KE = 1/2 m v²
KE = 1/2 * 100 kg * (98.99494 m/s)²
KE = 490,000 J
Pls. see attachment.
Answer:
74.86°C
Explanation:
P₂ = Vapour pressure of water at sea level = 760 mmHg
P₁ = Pressure at base camp = 296 mmHg
T₂ = Temperature of water = 373 K
ΔH°vap for H2O = 40.7 kJ/mol = 40700 J/mol
R = Gas constant = 8.314 J/mol K
From Claussius Clapeyron equation
T₁ = 347.996 K = 74.86°C
∴Water will boil at 74.86°C
Answer:
0.29D
Explanation:
Given that
F = G M m / r2
F = GM(6m) / (D-r)2
G Mm/r2 = GM(6m) / (D-r)2
1/r2 = 6 / (D-r)2
r = D / (Ö6 + 1)
r = 0.29 D
See diagram in attached file
Answer:
the correct answer is A, North
Explanation:
The forces are vectors so they must be added vectorially.
The magnitude of the forces is the same, but not their direction, which is why they are different.
Analyze the situation presented
We have a force towards the North and another towards the South with the same magnitude, therefore these cancel each other out
We have a force towards the Northeast and another towards the Northwest, these can be decomposed into parts, one towards the North and another on the East-West axis, this last component is canceled, but the component towards the North is added.
In summary we see that the body accelerates towards the North
the correct answer is A