Answer:
a) P ( 3 ≤X≤ 5 ) = 0.02619
b) E(X) = 1
Step-by-step explanation:
Given:
- The CDF of a random variable X = { 0 , 1 , 2 , 3 , .... } is given as:
Find:
a.Calculate the probability that 3 ≤X≤ 5
b) Find the expected value of X, E(X), using the fact that. (Hint: You will have to evaluate an infinite sum, but that will be easy to do if you notice that
Solution:
- The CDF gives the probability of (X < x) for any value of x. So to compute the P ( 3 ≤X≤ 5 ) we will set the limits.

- The Expected Value can be determined by sum to infinity of CDF:
E(X) = Σ ( 1 - F(X) )

E(X) = Limit n->∞ [1 - 1 / ( n + 2 ) ]
E(X) = 1
Answer:
ooooooooooooooooooooooooooooooooo
Step-by-step explanation:
la de da de da la de da de deee sudennly you call my name an I lose my weight and I float up to the sky!
A+ny = n
a = n-ny
a = (1-y)n
a/(1-y) = n
n = a/(1-y)
Here you go! Hope this helps!
If you put brackets around (2+1), your method of working is:
1) 15-4*(2+1)=3
2) 15-4*3=3
3) 15-12=3
You don't need any more brackets, as the BIDMAS (brackets, Indices, division, multiplication, addition, subtraction) rule does the rest of the job for you.
The answer is therefore: 15-4*(2+1)=3