Atomic mass Ar => 39.948 a.m.u
39.948 g --------------- 6.02x10²³ atoms
?? g -------------------- 3.8x10²⁴ atoms
(3.8x10²⁴) x 39.948 / 6.02x10²³ => 250 g
hope this helps!
<u>Answer:</u> The amount remained after 151 seconds are 0.041 moles
<u>Explanation:</u>
All the radioactive reactions follows first order kinetics.
Rate law expression for first order kinetics is given by the equation:
![k=\frac{2.303}{t}\log\frac{[A_o]}{[A]}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B2.303%7D%7Bt%7D%5Clog%5Cfrac%7B%5BA_o%5D%7D%7B%5BA%5D%7D)
where,
k = rate constant = 
t = time taken for decay process = 151 sec
= initial amount of the reactant = 0.085 moles
[A] = amount left after decay process = ?
Putting values in above equation, we get:
![4.82\times 10^{-3}=\frac{2.303}{151}\log\frac{0.085}{[A]}](https://tex.z-dn.net/?f=4.82%5Ctimes%2010%5E%7B-3%7D%3D%5Cfrac%7B2.303%7D%7B151%7D%5Clog%5Cfrac%7B0.085%7D%7B%5BA%5D%7D)
![[A]=0.041moles](https://tex.z-dn.net/?f=%5BA%5D%3D0.041moles)
Hence, the amount remained after 151 seconds are 0.041 moles
Answer:
The standard enthalpy of formation of methanol is, -238.7 kJ/mole
Explanation:
The formation reaction of CH_3OH will be,

The intermediate balanced chemical reaction will be,
..[1]
..[2]
..[3]
Now we will reverse the reaction 3, multiply reaction 2 by 2 then adding all the equations, Using Hess's law:
We get :
..[1]
..[2]
[3]
The expression for enthalpy of formation of
will be,



The standard enthalpy of formation of methanol is, -238.7 kJ/mole
The answer is: Electrons are shared in each pi bond. If the pi bonds flip back and forth between the adjacent p-orbitals on the two sides of an atom, the shared electrons in the p-orbitals can become delocalized.
Hope this help