7.91 g/ml is the density of the iron piece of 28.5 gms.
Explanation:
The density of a substance is defined as the volume it occupies. It tells the matter present in a substance.
The density is mass per unit volume and is denoted by p.
The formula for density is given by:
density (p) = 
Data given is :
mass= 28.5 grams
V1 = 45.5 ml
V2= 49.1 ml
The initial volume of water was 45.5 ml, when iron piece of 28.5 grams was added the final volume was 49.1 ml.
Putting the values in the equation of density
p = 
p = 7.91 g/ml
Since iron is a dense material it will occupy less volume
Answer: 0.028 grams
Explanation:
Depression in freezing point :
Formula used for lowering in freezing point is,

or,

where,
= change in freezing point
= freezing point constant (for benzene} =
m = molality
Putting in the values we get:


0.028 grams of DDT (solute) must be dissolved in 209.0 grams of benzene to reduce the freezing point by 0.400°C.
That would be evaporation.
Hope this helped!! xx
Answer:
Both roots are imaginary roots.
Explanation:
Consider these things:
If we try to solve x²+1 = 0, notice that we aren't able to solve the equation in Real Number system because there are no negative outputs for quadratic function.
Remember that quadratic function has range greater or equal to the max-min value.
x-axis plane represents the solutions of that equation. If a graph intersects x-axis plane then it has a solution.
While a graph that doesn't have any intersects on x-plane, it means that the equation for that graph doesn't have real solutions but imaginary solutions.
As you may notice some of parabola graph has one intersect, two intersects or none. One intersect is one solution to the equation — Two intersects are two solutions of the equation and lastly, no intersects mean that no real solutions and remain only imaginary solution.