Answer: D relative humidity
Explanation: Just took the test.
THE KINETIC MOLECULAR THEORY STATES THAT ALL PARTICLES OF AN IDEAL GAS ARE IN CONSTANT MOTION AND EXHIBITS PERFECT ELASTIC COLLISIONS.
Explanation:
An ideal gas is an imaginary gas whose behavior perfectly fits all the assumptions of the kinetic-molecular theory. In reality, gases are not ideal, but are very close to being so under most everyday conditions.
The kinetic-molecular theory as it applies to gases has five basic assumptions.
- Gases consist of very large numbers of tiny spherical particles that are far apart from one another compared to their size.
- Gas particles are in constant rapid motion in random directions.
- Collisions between gas particles and between particles and the container walls are elastic collisions.
- The average kinetic energy of gas particles is dependent upon the temperature of the gas.
- There are no forces of attraction or repulsion between gas particles.
Hope this helps, have a nice day!
Answer:
120 g of NaCl in 300 g H20 at 90 C
Explanation:
At x = 90 go vertical to the line for NaCl...then go left to the y-axis to find the solubility in 100 g H20 = 40
we want 300 g H20 so multiply this by 3 to get 120 gm of NaCl in 300 g
Yes, because the net ionic is equation will yield BaCO3 as a precipitate because it is insoluble in water