1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nata0808 [166]
2 years ago
10

Help Solve the linear equation word problem!

Mathematics
1 answer:
Crazy boy [7]2 years ago
7 0

Answer:

Step-by-step explanation:

Known facts

  • Marisol burned 670 calories
  • Ling burned x fewer calories than Marisol

Setting up the equation

# of calories that Ling burned = Marisol's calorie - x = 670 -x

Hope that helps!

You might be interested in
Suppose you are managing 16 employees, and you need to form three teams to work on different projects. Assume that all employees
valentina_108 [34]

Answer:

4380 ways

Step-by-step explanation:

We have to form 3 project of 16 employees, they tell us that the first project must have 5 employees, therefore we must find the number of combinations to choose 5 of 16 (16C5)

We have nCr = n! / (R! * (N-r)!)

replacing we have:

1st project:

16C5 = 16! / (5! * (16-5)!) = 4368 combinations

Now in the second project we must choose 1 employee, but not 16 but 11 available, therefore it would be to find the number of combinations to choose 1 of 11 (11C1)

2nd project:

11C1 = 11! / (1! * (11-1)!) = 11 combinations

For the third project we must choose 10 employees, but since we only have 10 available, we can only do a combination of this, since 10C10 = 1, therefore:

3rd project: 1 combination

The total number of combinations fro selecting 16 employees for each project would be:

4368 + 11 + 1 = 4380 combinations, that is, there are 4380 different ways of forming projects with the given conditions.

3 0
3 years ago
Please help and thank you
Feliz [49]

Answer:

C.

Step-by-step explanation:

6≤x<21

5 0
3 years ago
The graph of the function f(x) = (x +2)(x + 6) is shown
dalvyx [7]

The true about the domain and the range of the function is:

The domain is all real numbers, and the range is all real  numbers

greater than or equal to -4 ⇒ 1st answer

Step-by-step explanation:

f(x) = (x + 2)(x + 6) is a quadratic function with 2 factors (x + 2) and (x + 6)

By multiplying its two factors we will find the form of the quadratic function

∵ (x)(x) = x²

∵ (x)(6) = 6x

∵ (2)(x) = 2x

∵ (2)(6) = 12

∴ f(x) = x² + 6x + 2x + 12

- By adding like terms

∴ f(x) = x² + 8x + 12

The quadratic function represented graphically by a parabola

Look to the attached figure

The x-coordinate of the vertex point of the parabola h = \frac{-b}{a}

where b is the coefficient of x and a is the coefficient of x²

∵ f(x) = x² + 8x + 12

∴ a = 1 and b = 8

∴ h = \frac{-8}{2*1}=-4

The y-coordinate of the vertex point is k = f(h)

∵ h = -4

∴ k = f(-4)

∴ k = (-4)² + 8(-4) = 12 = 16 - 32 + 12

∴ k = -4

∴ The vertex point of the parabola is (-4 , -4)

∵ The parabola is opened upward

∴ Its vertex is minimum point

∴ The minimum value of f(x) is y = -4

∵ The domain of the function is the values of x

∵ The range of the function is the values of y corresponding to the

   values of x

∵ x can be any real numbers

∴ x ∈ R, where R is the set of real numbers

∴ The domain of f(x) is all real numbers

∵ The minimum value of f(x) is y = -4

∴ y can be any real number greater than or equal to -4

∴ y ≥ -4

∴ The range is all real number greater than or equal to -4

The true about the domain and the range of the function is:

The domain is all real numbers, and the range is all real  numbers

greater than or equal to -4

Learn more:

You can learn more about quadratic function in brainly.com/question/1332667

#LearnwithBrainly

7 0
2 years ago
Ken and Tami are making necklaces. Ken makes 25 necklaces. Tami makes m more necklaces then Ken. Which expression represents the
-BARSIC- [3]

Answer:

Step-by-step explanation

show the expression pls

7 0
3 years ago
Read 2 more answers
If n is a positive integer, how many 5-tuples of integers from 1 through n can be formed in which the elements of the 5-tuple ar
sleet_krkn [62]

This question is incomplete, the complete question is;

If n is a positive integer, how many 5-tuples of integers from 1 through n can be formed in which the elements of the 5-tuple are written in increasing order but are not necessarily distinct.

In other words, how many 5-tuples of integers  ( h, i , j , m ), are there with  n ≥ h ≥ i ≥ j ≥ k ≥ m ≥ 1 ?

Answer:

the number of 5-tuples of integers from 1 through n that can be formed is [ n( n+1 ) ( n+2 ) ( n+3 ) ( n+4 ) ] / 120

Step-by-step explanation:

Given the data in the question;

Any quintuple ( h, i , j , m ), with n ≥ h ≥ i ≥ j ≥ k ≥ m ≥ 1

this can be represented as a string of ( n-1 ) vertical bars and 5 crosses.

So the positions of the crosses will indicate which 5 integers from 1 to n are indicated in the n-tuple'

Hence, the number of such quintuple is the same as the number of strings of ( n-1 ) vertical bars and 5 crosses such as;

\left[\begin{array}{ccccc}5&+&n&-&1\\&&5\\\end{array}\right] = \left[\begin{array}{ccc}n&+&4\\&5&\\\end{array}\right]

= [( n + 4 )! ] / [ 5!( n + 4 - 5 )! ]

= [( n + 4 )!] / [ 5!( n-1 )! ]

= [ n( n+1 ) ( n+2 ) ( n+3 ) ( n+4 ) ] / 120

Therefore, the number of 5-tuples of integers from 1 through n that can be formed is [ n( n+1 ) ( n+2 ) ( n+3 ) ( n+4 ) ] / 120

4 0
3 years ago
Other questions:
  • There are (4^9)^5 •4^0 books are the library. What is the total number of books at the library?
    10·1 answer
  • 85 is what percent of 340
    15·1 answer
  • -
    8·1 answer
  • The original cost of a TV is $800. It is currently in sale for 25% off. What is the price if TV on sale?
    15·1 answer
  • Please HELP. <br> 11x-2x+15=8+7+9x
    8·1 answer
  • 8.
    6·1 answer
  • Find the surface area <br> Please explain
    6·2 answers
  • A student mixed two clear liquids together in a beaker. A solid and a new liquid formed. The student forgot to write down the ma
    9·1 answer
  • Someone PLEASE HELP ME ASAP!!!!
    14·1 answer
  • Coming back to this app is bringing back memories and its making me cry T-T
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!