Answer:
M1 V1 = M1 V2 + M2 V3 conservation of momentum
V2 = (M1 V1 - M2 V3) / M1 where V2 = speed of M1 after impact
V2 = (3 * 9 - 1.5 * 5) / 9 = (27 - 7.5) / 9 = 2.17 m/s
Note: All speeds are in the same direction and have the same sign
C Camera. I think this because you can make timelapses with cameras which makes it easy to see.
<span><span>anonymous </span> 4 years ago</span>Any time you are mixing distance and acceleration a good equation to use is <span>ΔY=<span>V<span>iy</span></span>t+1/2a<span>t2</span></span> I would split this into two segments - the rise and the fall. For the fall, Vi = 0 since the player is at the peak of his arc and delta-Y is from 1.95 to 0.890.
For the upward part of the motion the initial velocity is unknown and the final velocity is zero, but motion is symetrical - it takes the same amount of time to go up as it does to go down. Physiscists often use the trick "I'm going to solve a different problem, that I know will give me the same answer as the one I was actually asked.) So for the first half you could also use Vi = 0 and a downward delta-Y to solve for the time.
Add the two times together for the total.
The alternative is to calculate the initial and final velocity so that you have more information to work with.
Because there is no oxygen in space and we need oxygen to function so we need the suit to incapsulate us in oxygen so we can respire and so can our skin
Explanation:
Current output at the battery will be current of entire circuit, while the current through each bulb in the parallel circuit is the total current circuit.
So, current output through power supply is i and current through each component be
considering only three component.
Then in a parallel circuit
