1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dolphi86 [110]
3 years ago
10

HELP ME PLS

Physics
1 answer:
crimeas [40]3 years ago
3 0

Answer

-The magnitude of acceleration during the fall is greater

You might be interested in
Help please <br> hhjshwjsjejjenrhrhfhhfheisiw
DanielleElmas [232]

Answer:

A

Explanation:

4 0
3 years ago
A tennis racket hits a tennis ball with a force of F=at−bt2, where a = 1290 N/ms , b = 330 N/ms2 , and t is the time (in millise
denpristay [2]

Answer:

The resulting velocity of the ball after it hits the racket was of V= 51.6 m/s

Explanation:

m= 55.6 g = 0.0556 kg

t= 2.8 ms = 2.8 * 10⁻³ s

F= 1290 N/ms * t - 330 N/ms² * t²

F= 1024.8 N

F*t= m * V

V= F*t/m

V= 51.6 m/s

6 0
3 years ago
1. If an object of mass m collides and velocity v collides inelastically with an object of mass 3m that is initially at rest, th
Archy [21]

Answer:

1a). 4 times. 1b) 4. 1c) 1/4.

2a) 5 times. 1b) 5 1c) 1/5

3a) 7/3 times 3b) 7/3 3c) 3/7

4a) 8/5 times 4b) 8/5 4c) 5/8

Explanation:

1) Assuming no external forces acting during the collision, total momentum must be conserved, so the following general expression applies:

m₁*v₁₀ + m₂*v₂₀ = m₁*v₁f  + m₂*v₂f (1)

If we assume that the collision is perfectly inelastic, this means that both masses stick together after the collision, so v₁f = v₂f.

If m₂ is initially at rest, ⇒ v₂₀ = 0.

Replacing in (1) we get the expression of vf as a function of v₁₀, as follows:

vf = v₁₀*(m₁/(m₁+m₂)

So, for the four cases we have the following:

1) initial mass = m

  final mass = m+3m = 4 m

⇒final mass / initial mass = 4

vf = v₀* (m/4m) = v₀/4  ⇒v₀/vf = 4

So, the velocity of the system will decrease by a factor of 4. The new velocity will be vf= v₀/4.

2) Applying the same considerations, we get:

2a)  final mass / initial mass = 5

2b) vf = v₀* (m/5m) = v₀/5  ⇒v₀/vf = 5

2c) vf = v₀/5

3) Applying the same considerations, we get:

3a)  final mass / initial mass = 7/3

3b) vf = v₀* (3m/7m) =3/7* v₀  ⇒v₀/vf = 7/3

3c) vf = 3/7*v₀

4) Applying the same considerations, we get:

4a)  final mass / initial mass = 8/5

4b) vf = v₀* (5m/8m) = 5/8*v₀ ⇒v₀/vf = 8/5

4c) vf = 5/8*v₀

3 0
3 years ago
Can you help me with this??
s2008m [1.1K]

Answer:

i want to say flip the coins but im not really sure sry

Explanation:

3 0
3 years ago
alculate the kinetic energies of (a) a 2.00×103-kg automobile moving at 100.0 km/h; (b) an 80.0-kg runner sprinting at 10.0 m/s;
zzz [600]

Answer:

(a) 7.72×10⁵ J

(b) 4000 J

(c) 1.82×10⁻¹⁶ J

Explanation:

Kinetic Energy: This can be defined energy of a body due to its motion. The expression for kinetic energy is given as,

Ek = 1/2mv²................... Equation 1

Where Ek = Kinetic energy, m = mass, v = velocity

(a)

For a moving automobile,

Ek = 1/2mv².

Given: m = 2.0×10³ kg, v = 100 km/h = 100(1000/3600) m/s = 27.78 m/s

Substitute into equation 1

Ek = 1/2(2.0×10³)(27.78²)

Ek = 7.72×10⁵ J

(b)

For a sprinting runner,

Given: m = 80 kg, v = 10 m/s

Substitute into equation 1 above,

Ek = 1/2(80)(10²)

Ek = 40(100)

Ek = 4000 J

(c)

For a moving electron,

Given: m = 9.10×10⁻³¹ kg, v = 2.0×10⁷ m/s

Substitute into equation 1 above,

Ek = 1/2(9.10×10⁻³¹)(2.0×10⁷)²

Ek = 1.82×10⁻¹⁶ J

8 0
3 years ago
Other questions:
  • What is the working principle of lever​
    11·1 answer
  • Can someone please help with this?
    13·1 answer
  • What are non examples of a medium?
    15·1 answer
  • The atomic number of beryllium (Be) is 4, and the atomic number of barium (Ba) is 56. Which comparison is best supported by this
    11·2 answers
  • You have been posted to a remote region of space to monitor traffic. Near the end of a quiet shift, a spacecraft streaks past. Y
    13·1 answer
  • Can a fire have a shadow?
    14·2 answers
  • A spaceship leaves a space station and emits a flash of light that travels at a speed of 300,000 km/s. The spaceship starts out
    11·2 answers
  • According to the Second Law of Thermodynamics, a. any process during which the entropy of the universe increases will be product
    5·1 answer
  • A car drives around a curve with a radius of 42 m at a velocity of 24m/s. What is the centripical acceleration of the car?
    8·1 answer
  • What is the potential energy of a 2500 g object suspended 5 kg above the earth's surface?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!