<span>This is because Helium
has two valence electrons compared to Hydrogen which has only one. Helium has
more energy levels for an electron to jump thus more spectral lines to occur.
The spectral lines relating to each change of energy level would be more
grouped together and hence the greater chance of them falling in the visible
range.</span>
<span>B. The properties they have</span>
An atom is made up of three different particles, which are proton, neutron and electron. The proton and the neutron are located in the nucleus of the atom and they make up mass of the atom. The electron orbit around the nucleus. The proton is positively charged while the electron is negatively charged, thus, for the atom to remain neutral, the number of proton and electron in an atom must be equal. The neutron has no charge.
The atomic mass of an element = number of proton + number of neutron
Atomic mass of magnesium= 24
Number of proton = 12
Therefore, number of neutron = 24 - 12 = 12.
Thus, the number of neutron = 12.
I think the correct answer from the choices listed above would be the last option. It is the chemicals in the core of the star that cannot be determined from the spectrum of a star. Spectrum shows the different classification of the stars depending on their spectral characteristics. It usually involves the light, the wavelength and the distance.