<span>In an internal combustion engine, heat flow into a gas causes it to expand.
The application of direct force to specific parts of the engine will produce </span>expansion of the high-temperature<span> and high-</span>pressure<span> gases. Which will transform the chemical energy from the fuel (such as gasoline or oi) into mechanical energy.</span>
Density = (mass) divided by (volume)
We know the mass (2.5 g). We need to find the volume.
The penny is a very short cylinder.
The volume of a cylinder is (π · radius² · height).
The penny's radius is 1/2 of its diameter = 9.775 mm.
The 'height' of the cylinder is the penny's thickness = 1.55 mm.
Volume = (π) (9.775 mm)² (1.55 mm)
= (π) (95.55 mm²) (1.55 mm)
= (π) (148.1 mm³)
= 465.3 mm³
We know the volume now. So we could state the density of the penny,
but nobody will understand what we have. Here it is:
mass/volume = 2.5 g / 465.3 mm³ = 0.0054 g/mm³ .
Nobody every talks about density in units of ' gram/(millimeter)³ ' .
It's always ' gram / (centimeter)³ '.
So we have to convert our number for the volume.
(0.0054 g/mm³) x (10 mm / cm)³
= (0.0054 x 1,000) g/cm³
= 5.37 g/cm³ .
This isn't actually very close to what the US mint says for the density
of a penny, but it's in a much better ball park than 0.0054 was.
Answer:
-22/15
Explanation:
the least common denominator is 15 so first you multiply -2/3 by 5 in both the numerator and denominator making it -10/15
Then you do the same to -4/5 except you multiply the numerator and denominator by 3 giving you -12/15
If you add -10/15+ -12/15 you get -22/15
25 volts
Explanation:
Use Ohm's law to find the potential drop:
V = IR
= (0.5 A)(50 ohms)
= 25 volts