Answer:
Total number of ways will be 209
Step-by-step explanation:
There are 6 boys and 4 girls in a group and 4 children are to be selected.
We have to find the number of ways that 4 children can be selected if at least one boy must be in the group of 4.
So the groups can be arranged as
(1 Boy + 3 girls), (2 Boy + 2 girls), (3 Boys + 1 girl), (4 boys)
Now we will find the combinations in which these arrangements can be done.
1 Boy and 3 girls =
=24
2 Boy and 2 girls=
3 Boys and 1 girl = 
4 Boys = 
Now total number of ways = 24 + 90 + 80 + 15 = 209
Answer:
0
Step-by-step explanation:
For common denominator,
6/8 - 3/4 = 6/8 - (3*2)/(4*2) = 6/8 - 6/8 = 0
We can factor out the 4 to get
4(2a^3b^8+ab-4ab^8)
we can also factor out the ab
4ab(2a^2b^7+1-4b^7)
that is factored completely
Answer: -19
Step-by-step explanation: when ur adding two negatives it's gonna equal a negative