Answer:dwqdwdqw
Step-by-step explanation:
abuhchqecieuc
For Part A, what to do first is to equate the given equation to zero in order to find your x intercepts (zeroes)
0=-250n^2+3,250n-9,000 after factoring out, we get
-250(n-4)(n-9) and these are your zero values.
For Part B, you need to square the function from the general equation Ax^2+Bx+C=0. So to do that, we use the equated form of the equation 0=-250n^2+3,250n-9,000 and in order to have a positive value of 250n^2, we divide both sides by -1
250n^2-3,250n+9,000=0
to simplify, we divide it by 250 to get n^2-13n+36=0 or n^2-13n = -36 (this form is easier in order to complete the square, ax^2+bx=c)
in squaring, we need to apply <span><span><span>(<span>b/2</span>)^2 to both sides where our b is -13 so,
(-13/2)^2 is 169/4
so the equation now becomes n^2-13n+169/4 = 25/4 or to simplify, we apply the concept of a perfect square binomial, so the equation turns out like this
(n-13/2)^2 = 25/4 then to find the value of n, we apply the square root to both sides to obtain n-13/2 = 5/2 and n is 9. This gives us the confirmation from Part A.
For Part C, since the function is a binomial so the graph is a parabola. The axis of symmetry would be x=5.
</span></span></span>
7x^2+10x^2= 17x^2
Answer. 17x^2+5y^3
Answer:
PQ = 5 units
QR = 8 units
Step-by-step explanation:
Given
P(-3, 3)
Q(2, 3)
R(2, -5)
To determine
The length of the segment PQ
The length of the segment QR
Determining the length of the segment PQ
From the figure, it is clear that P(-3, 3) and Q(2, 3) lies on a horizontal line. So, all we need is to count the horizontal units between them to determine the length of the segments P and Q.
so
P(-3, 3), Q(2, 3)
PQ = 2 - (-3)
PQ = 2+3
PQ = 5 units
Therefore, the length of the segment PQ = 5 units
Determining the length of the segment QR
Q(2, 3), R(2, -5)
(x₁, y₁) = (2, 3)
(x₂, y₂) = (2, -5)
The length between the segment QR is:




Apply radical rule: ![\sqrt[n]{a^n}=a,\:\quad \mathrm{\:assuming\:}a\ge 0](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Ba%5En%7D%3Da%2C%5C%3A%5Cquad%20%5Cmathrm%7B%5C%3Aassuming%5C%3A%7Da%5Cge%200)

Therefore, the length between the segment QR is: 8 units
Summary:
PQ = 5 units
QR = 8 units