Answer:
12a + 6
Step-by-step explanation:
given 3(4a + 2)
multiply each term in the parenthesis by the 3 outside ( distributive law )
= (3 × 4a ) + (3 × 2 ) = 12a + 6
Answer:[m, m+d, m+2d, - - - - -, n]
Step-by-step explanation:
We know the formula for arithmetic progression is a_(n) = a_(1) + (n-1)d
Where a_(n) is the nth term of the sequence
a_(1) is the first term of the sequence
n is the number of the term like if we are talking about 7th term so the n is 7.
d is the difference between two successive terms.
For this problem we know our first term that is m, our last term that is n and our difference that is d.
For second term we will use the formula
a_(2) = m + (2-1)d
a_(2) = m + (1)d
a_(2) = m + d
Similarly,
a_(3) = m + (3-1)d
a_(3) = m + (2)d
a_(3) = m + 2d
Answer:
x = - 5, x = 4
Step-by-step explanation:
Given
f(x) = x² + x - 20
To find the zeros equate f(x) to zero, that is
x² + x - 20 = 0
Consider the factors of the constant term ( - 20) which sum to give the coefficient of the x- term ( + 1)
The factors are + 5 and - 4, since
5 × - 4 = - 20 and + 5 - 4 = + 1, hence
(x + 5)x - 4) = 0 ← in factored form
Equate each factor to zero and solve for x
x + 5 = 0 ⇒ x = - 5
x - 4 = 0 ⇒ x = 4
Answer:
2.00
Step-by-step explanation:
let the empty box be the variable n. n+0.34=2.34
subtract .34 from both sides
n=2.00
Graph the equation in a graphing calculator or in the table in a regular calculator and look for the zero on the x axis and the y axis