1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lelu [443]
3 years ago
11

Help please. What is the measure of angle A ?

Mathematics
1 answer:
nexus9112 [7]3 years ago
3 0

Answer:

Identify the smaller acute angle associated with the reflex angle. A reflex angle has more than 180 degrees but fewer than 360.

Draw a vertical line connecting the rays of the acute angle. ...

Measure the rise and the run of the acute angle. ...

Divide rise by run to find the slope of the acute angle. ...

Step-by-step explanation:

You might be interested in
Given f (x) = 8x + 4<br> find f (6)
Goryan [66]

Answer:

52

Step-by-step explanation:

f(6)= (8 × 6) + 4

= 48 + 4

= 52

4 0
3 years ago
Read 2 more answers
This problem asks for Taylor polynomials forf(x) = ln(1 +x) centered at= 0. Show Your work in an organized way.(a) Find the 4th,
stich3 [128]

Answer:

a) The 4th degree , 5th degree and sixth degree polynomials

f^{lV} (x) = \frac{(2(-3))}{(1+x)^4} (1)= \frac{((-1)^3(3!))}{(1+x)^4}

f^{V} (x) = \frac{(2(-3)(-4))}{(1+x)^5} =\frac{(-1)^4 (4!)}{(1+x)^5}

f^{V1} (x) = \frac{(-120))}{(1+x)^6} (1) = \frac{(-1)^5 5!}{(1+x)^6}

b)The nth degree Taylor polynomial for f(x) centered at x = 0, in expanded form.

log(1+x) = x - \frac{x^2}{2} +\frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \frac{x^6}{6}+\\..  (-1)^{n-1}\frac{x^n}{n} +..

Step-by-step explanation:

Given the polynomial function f(x) = log(1+x) …...(1) centered at x=0

      f(x) = log(1+x) ……(1)

using formula \frac{d}{dx} logx =\frac{1}{x}

Differentiating Equation(1) with respective to 'x' we get

f^{l} (x) = \frac{1}{1+x} (\frac{d}{dx}(1+x)

f^{l} (x) = \frac{1}{1+x} (1)  ….(2)

At x= 0

f^{l} (0) = \frac{1}{1+0} (1)= 1

using formula \frac{d}{dx} x^{n-1}  =nx^{n-1}

Again Differentiating Equation(2) with respective to 'x' we get

f^{l} (x) = \frac{-1}{(1+x)^2} (\frac{d}{dx}((1+x))

f^{ll} (x) = \frac{-1}{(1+x)^2} (1)    ….(3)

At x=0

f^{ll} (0) = \frac{-1}{(1+0)^2} (1)= -1

Again Differentiating Equation(3) with respective to 'x' we get

f^{lll} (x) = \frac{(-1)(-2)}{(1+x)^3} (\frac{d}{dx}((1+x))

f^{lll} (x) = \frac{(-1)(-2)}{(1+x)^3} (1)=  \frac{(-1)^2 (2)!}{(1+x)^3} ….(4)

At x=0

f^{lll} (0) = \frac{(-1)(-2)}{(1+0)^3} (1)

f^{lll} (0) = 2

Again Differentiating Equation(4) with respective to 'x' we get

f^{lV} (x) = \frac{(2(-3))}{(1+x)^4} (\frac{d}{dx}((1+x))

f^{lV} (x) = \frac{(2(-3))}{(1+x)^4} (1)= \frac{((-1)^3(3!))}{(1+x)^4} ....(5)

f^{lV} (0) = \frac{(2(-3))}{(1+0)^4}

f^{lV} (0) = -6

Again Differentiating Equation(5) with respective to 'x' we get

f^{V} (x) = \frac{(2(-3)(-4))}{(1+x)^5} (\frac{d}{dx}((1+x))

f^{V} (x) = \frac{(2(-3)(-4))}{(1+x)^5} =\frac{(-1)^4 (4!)}{(1+x)^5} .....(6)

At x=0

f^{V} (x) = 24

Again Differentiating Equation(6) with respective to 'x' we get

f^{V1} (x) = \frac{(2(-3)(-4)(-5))}{(1+x)^6} (\frac{d}{dx}((1+x))

f^{V1} (x) = \frac{(-120))}{(1+x)^6} (1) = \frac{(-1)^5 5!}{(1+x)^6}

and so on...

The nth term is

f^{n} (x) =  = \frac{(-1)^{n-1} (n-1)!}{(1+x)^n}

Step :-2

Taylors theorem expansion of f(x) is

f(x) = f(a) + \frac{x}{1!} f^{l}(x) +\frac{(x-a)^2}{2!}f^{ll}(x)+\frac{(x-a)^3}{3!}f^{lll}(x)+\frac{(x-a)^4}{4!}f^{lV}(x)+\frac{(x-a)^5}{5!}f^{V}(x)+\frac{(x-a)^6}{6!}f^{VI}(x)+...….. \frac{(x-a)^n}{n!}f^{n}(x)

At x=a =0

f(x) = f(0) + \frac{x}{1!} f^{l}(0) +\frac{(x)^2}{2!}f^{ll}(0)+\frac{(x)^3}{3!}f^{lll}(0)+\frac{(x)^4}{4!}f^{lV}(0)+\frac{(x)^5}{5!}f^{V}(0)+\frac{(x)^6}{6!}f^{VI}(0)+...….. \frac{(x-0)^n}{n!}f^{n}(0)

Substitute  all values , we get

f(x) = f(0) + \frac{x}{1!} (1) +\frac{(x)^2}{2!}(-1)+\frac{(x)^3}{3!}(2)+\frac{(x)^4}{4!}(-6)+\frac{(x)^5}{5!}(24)+\frac{(x)^6}{6!}(-120)+...….. \frac{(x-0)^n}{n!}f^{n}(0)

On simplification we get

log(1+x) = x - \frac{x^2}{2} +\frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \frac{x^6}{6}+\\..  (-1)^{n-1}\frac{x^n}{n} +..

4 0
4 years ago
What is the slope of a line that passes through the points (9,-6) and (-8,7)?
lianna [129]
<h2>Answer:    slope = - ¹³/₁₇  </h2>

Step-by-step explanation:    

       The question gives us two points, (9,-6) and (-8,7), from which we can find the slope and later the equation of the line.

<u>Finding the Slope  </u>

The slope of the line (m) = (y₂ - y₁) ÷ (x₂ - x₁)    

                                         =  (7 - (- 6)) ÷ (-8 - 9)  

                                         =   - ¹³/₁₇  

<em><u>Checking my answer:</u></em>

Finding the Equation

<em>We can now use the point-slope form (y - y₁) = m(x - x₁)) to write the equation for this line:</em>

<em>                                  ⇒  </em><em>y - (-6) =  - ¹³/₁₇ (x - 9)</em>

<em>                                          </em>

       

<em>To test my answer, I have included a Desmos Graph that I graphed using the information provided in the question and my answer.</em>

8 0
2 years ago
a grocery store sells and imported specialty cheesecake for $11 and its own store baked cheesecake for five Use the distributive
Radda [10]
I think its 17 the answer

7 0
4 years ago
Number of specific terms in x^5+y^5​
Airida [17]

Answer:

There are two terms.

3 0
4 years ago
Other questions:
  • If no digit can be used more than once in a number, how many 2 digits numbers can be formed using only the digits 7, 1, 3, and 9
    10·2 answers
  • Peppers cost $17.00 for 51 pounds. How much for 1 pound?
    7·1 answer
  • What is number 2, 3 and 4
    7·1 answer
  • Which description represents this type of sequence -99, -96, -92, -87, -81
    8·1 answer
  • How do you convert 15 ft to cm?
    10·1 answer
  • 2 units down
    15·1 answer
  • Make x the subject of this equation: ax+2=3x+b<br> Please!! Thank you
    8·1 answer
  • Indicate the data relationship for each table. If each is, directly proportional or non-proportional
    8·1 answer
  • HELP 100 POINT FAST (NO WRONG ANSWER) + BRAINLIEST TO WHO EVER ANSWERS FIRST U^U
    14·2 answers
  • Simplify the expression: 4(10 + 6u)
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!