Answer: The most likely partial pressures are 98.7MPa for NO₂ and 101.3MPa for N₂O₄
Explanation: To determine the partial pressures of each gas after the increase of pressure, it can be used the equilibrium constant Kp.
For the reaction 2NO₂ ⇄ N₂O₄, the equilibrium constant is:
Kp = 
where:
P(N₂O₄) and P(NO₂) are the partial pressure of each gas.
Calculating constant:
Kp = 
Kp = 0.0104
After the weights, the total pressure increase to 200 MPa. However, at equilibrium, the constant is the same.
P(N₂O₄) + P(NO₂) = 200
P(N₂O₄) = 200 - P(NO₂)
Kp = 
0.0104 = ![\frac{200 - P(NO_{2}) }{[P(NO_{2} )]^{2}}](https://tex.z-dn.net/?f=%5Cfrac%7B200%20-%20P%28NO_%7B2%7D%29%20%20%7D%7B%5BP%28NO_%7B2%7D%20%29%5D%5E%7B2%7D%7D)
0.0104
+
- 200 = 0
Resolving the second degree equation:
=
= 98.7
Find partial pressure of N₂O₄:
P(N₂O₄) = 200 - P(NO₂)
P(N₂O₄) = 200 - 98.7
P(N₂O₄) = 101.3
The partial pressures are
= 98.7 MPa and P(N₂O₄) = 101.3 MPa
Answer:
a. 113 min
Explanation:
Considering the equilibrium:-
2N₂O₅ ⇔ 4NO₂ + O₂
At t = 0 125 kPa
At t = teq 125 - 2x 4x x
Thus, total pressure = 125 - 2x + 4x + x = 125 - 3x
125 - 3x = 176 kPa
x = 17 kPa
Remaining pressure of N₂O₅ = 125 - 2*17 kPa = 91 kPa
Using integrated rate law for first order kinetics as:
Where,
is the concentration at time t
is the initial concentration
Given that:
The rate constant, k =
min⁻¹
Initial concentration
= 125 kPa
Final concentration
= 91 kPa
Time = ?
Applying in the above equation, we get that:-

Answer:
1.5 moles of Fe produced.
Explanation:
Given data:
Moles of FeO react = 1.50 mol
Moles of iron produced = ?
Solution:
Chemical equation:
FeO + CO → Fe + CO₂
Now we will compare the moles of ironoxide with iron.
FeO : Fe
1 : 1
1.5 : 1.5
Thus from 1.5 moles of FeO 1.5 moles of Fe are produced.
Answer:
2.05moles
Explanation:
The balanced chemical equation in this question is as follows;
Sn + 2H2SO4 → SnSO4 + SO2 + 2H2O
Based on the above equation, 2 moles of H2SO4 reacted to produce 1 mole of SnSO4
However, the mass of SnSO4 produced is 219.65 grams. Using mole = mass/molar mass, we can find the number of moles of SnSO4 produced.
Molar mass of SnSO4 where Sn = 118.7, S = 32, O = 16
= 118.7 + 32 + 16(4)
= 150.7 + 64
= 214.7g/mol
mole = 219.65/214.7
mole = 1.023mol
Therefore, if 2 moles of H2SO4 reacted to produce 1 mole of SnSO4
1.023 mol of SnSO4 produced will cause: 1.023 × 2/1
= 2.046moles of H2SO4 to react.
Answer:
Rubidium Sulfide
Explanation:
The chemical name for Rb2S is Rubidium Sulfide