If a dynamic equilibrium is disturbed by changing the conditions, the position of equilibrium shifts to counteract the change to reestablish equilibrium. If a chemical reaction is at equilibrium and experiences a change in pressure, temperature, or concentration of products or reactants, the equilibrium shifts in the opposite direction to offset the change. This page covers changes to the position of equilibrium due to such changes and discusses briefly why catalysts have no effect on the equilibrium position.
For example, if the system is changed in a way that increases the concentration of one of the reacting species, it must favor the reaction in which that species is consumed. In other words, if there is an increase in products, the reaction quotient, Qc, is increased, making it greater than the equilibrium constant, Kc.
Answer: A.Light travels in a straight line., B.Light behaves in a predictable way. , D.Light curves around corners or obstructions
-Hope this helps<3
Answer:
fusion reaction
The simple answer is that the sun, like all stars, is able to create energy because it is essentially a massive fusion reaction. Scientists believe that this began when a huge cloud of gas and particles (i.e. a nebula) collapsed under the force of its own gravity – which is known as Nebula Theory.
Explanation:
hope this helps
Answer:

Explanation:
We will need a balanced chemical equation with masses and molar masses, so, let's gather all the information in one place.
M_r: 32 60
CH₃OH + CO ⟶ CH₃COOH
m/g: 160
(a) Moles of CH₃OH

(b) Moles of CH₃COOH

(c) Mass of CH₃COOH
