Answer:
Being an elastic object, rubber ball will be an ideal choice as it will bounce off the bowling pit and will experience a large change in momentum in comparison with the beanbag which will either slow down or come to a halt upon hitting a bowling pit. That is why rubber ball will experience a greater impulse and the bowling pin will experience the negative impulse of the rubber ball.
For Rubber Ball
Upon elastic collision it will reverses the direction and move with velocity equal or less then original
change in momentum = P

For Beanbag
value of impulse will large if velocity is zero.

Explanation:
Answer: 10 m/s
Explanation: Velocity/Time
50/5= 10
:)
For purposes of completing our calculations, we're going to assume that
the experiment takes place on or near the surface of the Earth.
The acceleration of gravity on Earth is about 9.8 m/s², directed toward the
center of the planet. That means that the downward speed of a falling object
increases by 9.8 m/s for every second that it falls.
3 seconds after being dropped, a stone is falling at (3 x 9.8) = 29.4 m/s.
That's the vertical component of its velocity. The horizontal component is
the same as it was at the instant of the drop, provided there is no horizontal
force on the stone during its fall.
Answer:
B. and D. would be my best guess.
Explanation:
The reason why is because if you lower the resistance, the voltage will be higher, and if you higher the voltage, the resistance would be lower and the voltage would higher.
Answer:
a force
Explanation:
a force causes a certain object to move and make a displacement.