Explanation:
It is given that,
Mass of golf club, m₁ = 210 g = 0.21 kg
Initial velocity of golf club, u₁ = 56 m/s
Mass of another golf ball which is at rest, m₂ = 46 g = 0.046 kg
After the collision, the club head travels (in the same direction) at 42 m/s. We need to find the speed of the golf ball just after impact. Let it is v.
Initial momentum of golf ball, 
After the collision, final momentum 
Using the conservation of momentum as :


v = 63.91 m/s
So, the speed of the golf ball just after impact is 63.91 m/s. Hence, this is the required solution.
Answer:
I go with D but what you can do is u can read each and choose the one that sounds right Hope this helps
Some waves can travel without a -medium-, a channel like telephone power lines, lenses, or even particles in the air or in water.
Answer:
A = 1.4 m/s²
B = -0.10493 m/s³
a = 1.29507 m/s²
T = 28095.8271 N
T = 1.13198 W
Explanation:
t = Time taken
g = Acceleration due to gravity = 9.81 m/s²
The equation

Differentiating with respect to time

At t = 0

Hence, A = 1.4 m/s²

B = -0.10493 m/s³
At t = 5 seconds

a = 1.29507 m/s²

T = 28095.8271 N
Weight of rocket


T = 1.13198 W