Answer:
Hello,
Step-by-step explanation:
using Thalès 's théorem :

x≈6.7 (i don't know what d.p. means , perhaps 1 decimal after the point)
Answer:
INF for first while D for second
Step-by-step explanation:
Ok I think I read that integral with lower limit 1 and upper limit infinity
where the integrand is ln(x)*x^2
integrate(ln(x)*x^2)
=x^3/3 *ln(x)- integrate(x^3/3 *1/x)
Let's simplify
=x^3/3 *ln(x)-integrate(x^2/3)
=x^3/3*ln(x)-1/3*x^3/3
=x^3/3* ln(x)-x^3/9+C
Now apply the limits of integration where z goes to infinity
[z^3/3*ln(z)-z^3/9]-[1^3/3*ln(1)-1^3/9]
[z^3/3*ln(z)-z^3/9]- (1/9)
focuse on the part involving z... for now
z^3/9[ 3ln(z)-1]
Both parts are getting positive large for positive large values of z
So the integral diverges to infinity (INF)
By the integral test... the sum also diverges (D)
12345
Step-by-step explanation:
1 learn
2dont play any game
3study first
4read books
5read the math book
Answer:
so the difference is 84 - 63 = 21.
if we take 84 to be the 100%, what is 21 off of it in percentage?
Step-by-step explanation: