Recall Euler's theorem: if
, then

where
is Euler's totient function.
We have
- in fact,
for any
since
and
share no common divisors - as well as
.
Now,

where the
are positive integer coefficients from the binomial expansion. By Euler's theorem,

so that

Part A: This data does represent a function because no value of x is repeated.
Part B: If x = 6 for the relation f(x) = 7x - 15, then f(x) will equal 27. The function f(x) = 7x - 15 will have the greater value
Part C: If f(x) is equal to 6 then x will equal 3
Answer:
Liquid R has a mass of of 1 kg at a temperature of 30°c kept in a refrigerator to freeze . Given the specific heat capacity is 300 J kg-¹ °c-1 and the freezing point is 4°c . Calculate the heat release by liquid R.
Step-by-step explanation:
Liquid R has a mass of of 1 kg at a temperature of 30°c kept in a refrigerator to freeze . Given the specific heat capacity is 300 J kg-¹ °c-1 and the freezing point is 4°c . Calculate the heat release by liquid R.
<h2>
Answer:</h2>
y =
x + 3
<h2>
Step-by-step explanation:</h2>
As shown in the graph, the line is a straight line. Therefore, the general equation of a straight line can be employed to derive the equation of the line.
The general equation of a straight line is given by:
y = mx + c <em>or </em>-------------(i)
y - y₁ = m(x - x₁) -----------------(ii)
Where;
y₁ is the value of a point on the y-axis
x₁ is the value of the same point on the x-axis
m is the slope of the line
c is the y-intercept of the line.
Equation (i) is the slope-intercept form of a line
Steps:
(i) Pick any two points (x₁, y₁) and (x₂, y₂) on the line.
In this case, let;
(x₁, y₁) = (0, 3)
(x₂, y₂) = (4, -2)
(ii) With the chosen points, calculate the slope <em>m</em> given by;
m = 
m = 
m = 
(iii) Substitute the first point (x₁, y₁) = (0, 3) and m =
into equation (ii) as follows;
y - 3 =
(x - 0)
(iv) Solve for y from (iii)
y - 3 =
x
y =
x + 3 [This is the slope intercept form of the line]
Where the slope is
and the intercept is 3
Variance of a continuous random variable X is defined as
Standard deviation is defined as

Hence standard deviation is the positive square root of variance.