1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
gtnhenbr [62]
2 years ago
13

Which kind of inclined plane pushes up more? Steeper or flatter?

Physics
1 answer:
Viktor [21]2 years ago
7 0

Answer:

They should've sensed that it was easier as the board got steeper. A flatter inclined plane has to apply more upward force to support something (or someone) because gravity, pulling toward the center of the Earth, pulls the object more into the table.Explanation:

You might be interested in
Who is the leader of the party's national committee
cestrela7 [59]
That would be <span>the national chairperson

-I hope this helped.</span>
3 0
3 years ago
Read 2 more answers
A monatomic ideal gas undergoes an adiabatic expansion to double its volume. the same final state can be reached by an isobaric
Vlada [557]
(2^(1-γ)-1)/(1-γ) where γ is the heat capacity ratio, Cp/Cv. See attached image for the working.

http://prntscr.com/htqqte
5 0
3 years ago
Alternating Current In Europe, the voltage of the alternating current coming through an electrical outlet can be modeled by the
stealth61 [152]

Answer:

\frac{50}{\pi }Hz

Explanation:

In alternating current (AC) circuits, voltage (V) oscillates in a sine wave pattern and has a general equation as a function of time (t) as follows;

V(t) = V sin (ωt + Ф)            -----------------(i)

Where;

V = amplitude value of the voltage

ω = angular frequency = 2 π f        [f = cyclic frequency or simply, frequency]

Ф = phase difference between voltage and current.

<u><em>Now,</em></u>

From the question,

V(t) = 230 sin (100t)              ---------------(ii)

<em><u>By comparing equations (i) and (ii) the following holds;</u></em>

V = 230

ω = 100

Ф = 0

<em><u>But;</u></em>

ω = 2 π f = 100

2 π f = 100             [divide both sides by 2]

π f = 50

f = \frac{50}{\pi }Hz

Therefore, the frequency of the voltage is \frac{50}{\pi }Hz

7 0
3 years ago
An 89 kg man drops from rest on a diving board −3.1 m above the surface of the water and comes to rest 0.5 s after reaching the
OLga [1]

To solve this problem we will use the linear motion kinematic equations, for which the change of speed squared with the acceleration and the change of position. The acceleration in this case will be the same given by gravity, so our values would be given as,

m= 89 kg\\x = 3.1 m\\t = 0.5s\\a = g = 9.8m/s^2

Through the aforementioned formula we will have to

v_f^2-v_i^2 = 2ax

The particulate part of the rest, so the final speed would be

v_f^2 = 2gx

v_f=\sqrt{2(9.8)(3.1)}

v_f = 7.79m/s

Now from Newton's second law we know that

F = ma

Here,

m = mass

a = acceleration, which can also be written as a function of velocity and time, then

F = m\frac{dv}{dt}

Replacing we have that,

F = (89)\frac{7.79}{0.5}

F = 1386.62N

Therefore the force that the water exert on the man is 1386.62

3 0
3 years ago
Consider two massless springs connected in parallel. Springs 1 and 2 have spring constants k1 and k2 and are connected via a thi
77julia77 [94]

Answer:

k1 + k2

Explanation:

Spring 1 has spring constant k1

Spring 2 has spring constant k2

After being applied by the same force, it is clearly mentioned that spring are extended by the same amount i.e. extension of spring 1 is equal to extension of spring 2.

x1 = x2

Since the force exerted to each spring might be different, let's assume F1 for spring 1 and F2 for spring 2. Hence the equations of spring constant for both springs are

k1 = F1/x -> F1 =k1*x

k2 = F2/x -> F2 =k2*x

While F = F1 + F2

Substitute equation of F1 and F2 into the equation of sum of forces

F = F1 + F2

F = k1*x + k2*x

= x(k1 + k2)

Note that this is applicable because both spring have the same extension of x (I repeat, EXTENTION, not length of the spring)

Considering the general equation of spring forces (Hooke's Law) F = kx,

The effective spring constant for the system is k1 + k2

3 0
3 years ago
Other questions:
  • A car is moving with a uniform velocity.find out the force of which it is moving
    13·1 answer
  • Which of the following can significantly change a vehicle’s center of gravity?
    10·2 answers
  • A 40 cm wire with a radius of 3 cm is oriented along the y axis and carries a current of 2 A. What is the magnitude of the magne
    6·1 answer
  • You throw a ball horizontally from the top of a building, with a speed of 3 m/s. In this problem, you can neglect the force of a
    12·1 answer
  • When the mallet hits the ball with an action force, the ball exerts a reaction 1 force on the mallet as explained by: 1) Newton'
    7·2 answers
  • A rocket has a mass of 156,789 kg and is traveling at 45.6 m/s. How much kinetic energy does the rocket
    13·1 answer
  • Which describes the changes in visible light moving from red to violet?
    10·1 answer
  • If a car can go from 0 to 60 km/h in 8.0 seconds, what would be its final speed after 5.0 seconds if its starting speed were 50
    12·1 answer
  • Two gravitational forces act on a
    13·1 answer
  • Why does the chlorine atom have a partial negative charge in a molecule of hydrogen chloride?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!