15 guesting i think it not right
Answer:
c. is more than that of the fluid.
Explanation:
This problem is based on the conservation of energy and the concept of thermal equilibrium

m= mass
s= specific heat
\DeltaT=change in temperature
let s1= specific heat of solid and s2= specific heat of liquid
then
Heat lost by solid= 
Heat gained by fluid=
Now heat gained = heat lost
therefore,
1000 S_2=800 S_1
S_1=1.25 S_2
so the specific heat of solid is more than that of the fluid.
Answer:
The average recoil force on the gun during that 0.40 s burst is 45 N.
Explanation:
Mass of each bullet, m = 7.5 g = 0.0075 kg
Speed of the bullet, v = 300 m/s
Time, t = 0.4 s
The change in momentum of an object is equal to impulse delivered. So,

For 8 shot burst, average recoil force on the gun is :

So, the average recoil force on the gun during that 0.40 s burst is 45 N.
Answer:
t = 12,105.96 sec
Explanation:
Given data:
weight of spacecraft is 2000 kg
circular orbit distance to saturn = 180 km
specific impulse = 300 sec
saturn orbit around the sun R_2 = 1.43 *10^9 km
earth orbit around the sun R_1= 149.6 * 10^ 6 km
time required for the mission is given as t
![t = \frac{2\pi}{\sqrt{\mu_sun}} [\frac{1}{2}(R_1 + R_2)]^{3/2}](https://tex.z-dn.net/?f=t%20%3D%20%5Cfrac%7B2%5Cpi%7D%7B%5Csqrt%7B%5Cmu_sun%7D%7D%20%5B%5Cfrac%7B1%7D%7B2%7D%28R_1%20%2B%20R_2%29%5D%5E%7B3%2F2%7D)
where
is gravitational parameter of sun = 1.32712 x 10^20 m^3 s^2.![t = \frac{2\pi}{\sqrt{ 1.32712 x 10^{20}}} [\frac{1}{2}(149.6 * 10^ 6 +1.43 *10^9 )]^{3/2}](https://tex.z-dn.net/?f=t%20%3D%20%5Cfrac%7B2%5Cpi%7D%7B%5Csqrt%7B%201.32712%20x%2010%5E%7B20%7D%7D%7D%20%5B%5Cfrac%7B1%7D%7B2%7D%28149.6%20%2A%2010%5E%206%20%2B1.43%20%2A10%5E9%20%29%5D%5E%7B3%2F2%7D)
t = 12,105.96 sec
Answer:
the answer is
Explanation:For equilibrium
Weight = Tension
mg=T
∴T=4×3.1π=12.4πN (as can be inferred from the question)
Y=
△l/l
T/A
=
1000
0.031
/20
12.4π/π(
1000
2
)
2
=
4×0.031
12.4×20×1000×(1000)
2
=2×10
12
N/m
2