Answer:
Difference in Twin's Ages = 12.68 years
Explanation:
Using special theory of relativity's time dilation phenomenon, we first find the time that is passed on earth during Lou's trip.
t = t₀/[√(1 - v²/c²)]
where,
t = time measured by the person in relative motion = 1 year
t₀ = time measured by the person at rest = ?
v = speed of relative motion = 0.96 c
c = speed of light
Therefore,
1 year = t₀/[√(1 - 0.96² c²/c²)]
1 year = t₀/[√(1 - 0.9216)]
(1 year)(0.28 year) = t₀
t₀ = 0.28 year
Let,
y = Sue's age
x = Lou's age
so,
x - y = 13.4 years
but, after this trip Lou has aged 1 year, and on earth only 0.28 years passed so, Sue has aged only 0.28 years. Therefore,
x = x + 1
y = y + 0.28
Therefore,
(x + 1 year) - (y + 0.28 year) = 13.4 years
x - y = 13.4 years - 0.72 year
x - y = 12.68 years
<u>Difference in Twin's Ages = 12.68 years</u>
1, 2 & 4 are going to be the the correct answer for the question
To make it easier to share data and experimental results with other scientists from all over the world.
Answer:
2.295 eV
Explanation:
maximum wavelength, λ = 542 nm = 542 x 10^-9 m
The work function of the metal is defined as the minimum amount of energy falling on the metal so that the photo electrons just ejects the surface of metal.

where, h is the Plank's constant and c be the speed of light
h = 6.634 x 10^-34 Js
c = 3 x 10^8 m/s


Wo = 2.295 eV
Thus, the work function of this metal is 2.295 eV.
The law of conservation of momentum says that the total momentum in the system before and after the collision remains the same. Remember that <em>p = mv </em>(where p is momentum, m is mass, and v is velocity). To find the total momentum in the system, add up the momentum of each component.
Before the collision:
The momentum of the first cart is m*v = 1.5 * 1.2 = 1.8.
The momentum of the second cart is m*v = 0.75 * 0 = 0.
The total momentum is 1.8.
After the collision:
(where x is the unknown velocity):
The momentum of the first cart is m*v = 1.5x
The momentum of the second card is m*v = 0.75 * 2 = 1.5.
The total momentum is 1.5x + 1.5. Because of conservation of momentum, you know this is equal to the momentum before the collision:
1.8 = 1.5x + 1.5
Subtracting 1.5 from both sides:
0.3 = 1.5x
And dividing by 1.5:
x = 0.2 m/s forward (you know it is forward because it is positive)