Answer:
Option C
Step-by-step explanation:
You forgot to attach the expression that models the cost of the camping trip during the three days. However, by analyzing the units, the answer can be reached.
The total cost has to be in units of $.
There are two types of costs in the problem:
Those that depend on the number of days ($/day
)
Those that depend on the number of students and the number of days ($/(student * day))
If there are 3 days of camping and b students, then you have to multiply the costs that depend on the days by the number of days (3), and the costs that depend on the number of students you have to multiply them by 'b'
So, if the costs that must be multiplied by 'b' are only those that depend on the number of students, the coefficient of b must be:
3 days (Cost of training + Cost of food Miscellaneous expenses :).
Therefore the correct answer is option C:
C. It is the total cost of 3 days per student of Mr. Brown, with training, food and miscellaneous expenses.
The expression that represents the total expense should have a formula similar to this:
![y = (3 days) *([\frac{20.dollars}{(day * student)} + \frac{30.dollars}{(student * day)} + \frac{50.dollars}{(student * day)}] b + \frac{200}{day}) + 1050.dollars](https://tex.z-dn.net/?f=y%20%3D%20%283%20days%29%20%2A%28%5B%5Cfrac%7B20.dollars%7D%7B%28day%20%2A%20student%29%7D%20%2B%20%5Cfrac%7B30.dollars%7D%7B%28student%20%2A%20day%29%7D%20%2B%20%5Cfrac%7B50.dollars%7D%7B%28student%20%2A%20day%29%7D%5D%20b%20%2B%20%5Cfrac%7B200%7D%7Bday%7D%29%20%2B%201050.dollars)
y = 3 ($ 100b + $ 200) + $ 1050
All you do is use the a+b=c formula lets plug it in
15+b=35
15+20=35
35=35
The answer is 20
Answer:
- 8+w/4
- Putting w = 16
- 8+16/4
- (32+16)/4
- = 48/4
- = 12
Step-by-step explanation:
If you like my answer than please mark me brainliest thanks
Answer:
-52cm 2
Step-by-step explanation:
i am positive
C
first set up an equation
$52+8n ≥ 144
bacause she can spend 144 or less
solve 144-52=92
92/8=11.5