Energy E of EM radiation is given by the equation E=hf, where h is Planck's constant and f is frequency. It means energy E and frequency f are proportional so as we increase the frequency, energy also increases. Also, the relationship between the wavelength and frequency is c=λ*f where λ is the wavelength and f is frequency and c is the speed of light. This tells us the wavelength and frequency are inversely proportional. So as we increase the frequency the wavelength is getting smaller. So as we go from left to right the frequency increases, energy also increases and the wavelength is decreasing. Or, on the left side we should have low frequency, low radiant energy, and long wavelength. On the right side we should have high frequency, high radiant energy and low wavelength. That is the third graph.
Answer:
P = 96 J
Explanation:
Given that,
Weight of the book, W = mg = 8 N
It is placed at a height of 12 m
We need to find the potential energy of the book. The potential energy of an object is given by the formula as follows :
E = mgh
mg = Weight

So, the potential energy of the book is 96 J.
Answer:
The minimum speed required is 5.7395km/s.
Explanation:
To escape earth, the kinetic energy of the asteroid must be greater or equal to its gravitational potential energy:

or

where
is the mass of the asteroid,
is its distance form earth's center,
is the mass of the earth, and
is the gravitational constant.
Solving for
we get:

putting in numerical values gives


in kilometers this is

Hence, the minimum speed required is 5.7395km/s.
I believe it would be 1.6 East
Magnitudes are measured by intensity so a 3.4 earthquake is much less stronger than a 4.5 earthquake it’s very literally when measuring them the higher the number the stronger it is