No. A substance floats or sinks in another substance because of
the densities of both of them.
If the density of the substance is more than the density of the other
one, it will sink. If less than the density of the other one, it will float.
There’s no order to go off of...
Answer:
F = 24 N
Explanation:
In this exercise we have a bar l = 100 m with a center of gravity x = 4 m, which force is needed to lift it from the other end
Let's use the rotational equilibrium relationship, where we consider the counterclockwise rotations as positive and fix the reference system at the point closest to the center of gravity
∑ τ = 0
F l -x W = 0
F = 
let's calculate
F =
4/100 600
F = 24 N
I’ve answered this problem before and there were 2 parts in
this problem.
The solution would be like this for this specific problem:
<span>A.
</span><span>Vf = Vi +
Vex*ln(Mi / Mf) </span><span>
<span>0.002 * 3e8m/s = 0 + 2000m/s * ln(Mi / Mf) </span>
<span>300 = ln(Mi / Mf) </span>
<span>1.9e130 = Mi / Mf </span></span>
<span>B.
</span><span>4000m/s =
2000m/s * ln(Mi / Mf) </span><span>
<span>2 = ln(Mi / Mf) </span>
<span>7.389 = Mi / Mf </span>
<span>Mf = Mi / 7.389 = 0.135*Mi<span> </span></span></span>