Answer:
The vector form is as shown in the attachment
Explanation:
The figure as shown in the diagram, indicates that the car is moving along the road at a constant speed. Centripetal acceleration comes into play for an object moving in a circular motion at uniform speed. The centripetal acceleration is the acceleration experienced by an object while in uniform circular motion.
Mathematically from centripetal acceleration; a = v2/r
The equation shows that there is an inverse relationship between the acceleration and the radius of curvature as such the radius of curvature at the point A will be more than the radius of curvature at the point C, this shows that the centripetal acceleration at point C will be more than the centripetal acceleration at point A.
The attachment shows the figure and the representation in vectorial form.
The volcanic intrusion rule is relative dating
HOPE I HELPED!!!! =D
Tons of stuff!
Footpath erosion, increased usage of travel vehicles, construction of hotels and other attractions, ect ect.
Answer:
U_eq = 1.99 * 10^(-10) J
Explanation:
Given:
Plate Area = 10 cm^2
d = 0.01 m
k_dielectric = 3
k_air = 1
V = 15 V
e_o = 8.85 * 10 ^-12 C^2 / N .m
Equations used:
U = 0.5 C*V^2 .... Eq 1
C = e_o * k*A /d .... Eq 2
U_i = 0.5 e_o * k_i*A_i*V^2 /d ... Eq 3
For plate to be half filled by di-electric and half filled by air A_1 = A_2 = 0.5 A:
U_electric = 0.5 e_o * k_1*A*V^2 /2*d
U_air = 0.5 e_o * k_2*A*V^2 /2*d
The total Energy is:
U_eq = U_electric + U_air
U_eq = 0.5 e_o * k_1*A*V^2 /2*d + 0.5 e_o * k_2*A*V^2 /2*d
U_eq = (k_1 + k_2) * e_o * A*V^2 / 4*d
Plug the given values:
U_eq = (3 + 1) * (8.82 * 10^ -12 )* (0.001)*15^2 / 4*0.01
U_eq = 1.99 * 10^(-10) J
In order to calculate the gravitational force of the two bodies we use the formula which is expressed as:
F = GMm/R²
where <span>G = 6.67 x 10^-11 in SI unit, M and m are the mass of the two bodies and R is the distance between them.
F = </span>6.67 x 10^-11 (1.99×10^30) (6×10^24) / (1.50×10^11)²
F = 3.53×10^22<span>N</span>