<span>17⁄40 simplest form. ..........
</span>
Solve by elimination.
The goal is to cancel out one of the variables in order to easily solve for the other variable.
Do this by changing the equations so that the coefficients of either x or y add up to 0.
Notice the coefficients of y are 3 and 3, if we make one of them negative then they add up to 0. 3+ (-3) = 0
Multiply 2nd equation by -1.
6x +3y = 9
-2x -3y = -1
__________
4x +0y = 8
Solve for x
4x = 8
x = 8/4 = 2
Plug x=2 back into one of original equations to find y.
---> 2(2) + 3y = 1
---> 4 + 3y = 1
---> 3y = -3
---> y = -1
Therefore solution is (2,-1)
Answer:
The probability that exactly two of the four live in their own household and are income-qualified is = .0975
Step-by-step explanation:
Given -
Approximately 85% of persons age 70 to 84 live in their own household and are income-qualified for home purchases.
Probability of sucess ( p ) = 85% =.85
Probability of failure ( q ) = 1 - .85 =.15
n = 4
From combination of n events taking r sucess we use binomial distribution

where , r = 2
the probability that exactly two of the four live in their own household and are income-qualified is =

= 
= 
= .0975