Answer:
<em>Gases tend to deviate from ideal gas law at </em><u><em>high pressures and low temperatures.</em></u>
Explanation:
The main statements from molecular kinetic theory to describe an ideal gas is that 1) the gas particles occupy a neglictible fraction of the total volume of the gas, and 2) there is not force of attraction between gas particles.
HIgh pressure means that the gas particles will be forced closer to each other, making that the mean distance between the particles be realtively more important and their volume less neglictible. This is a violation the first assumption described above.
Since the temperature is directly related to the kinetic energy, and the latter with the movement of the particles (average speed), low temperatures lead to the molecules being less independent of each other, i.e. the forces between the molecules will count more . This fact constitutes a violation of the second principle established in the first paragraph.
In <u>conclusion</u>, <em>high pressures and low temperatures tend to deviate gases from the ideal gas law.</em>
You can read more about ideal and real gases behavior on brainly.com/question/12449772
Given in the problem is the mass of the liquid (500 grams) and the volume of the liquid (1000 ml = 1000 cm^3).
We can use these two givens to calculate the density of the liquid using the following rule:
density = mass / volume
density = 500 / 1000 = 0.5 grams / cm^3
Comparing the calculated density with the choices we have, we can deduce that the liquid is most likely to be propane with density 0.494 g / cm^3
We have that the the liquid is
- C_2H_5OH (ethanol
- And at a condition of H_2SO4 as catalyst and temp 170
From the question we are told
- A student wished to prepare <em>ethylene </em>gas by <em>dehydration </em>of ethanol at 140oC using sulfuric acid as the <em>dehydrating </em>agent.
- A low-boiling liquid was obtained instead of ethylene.
- What was the liquid, and how might the reaction conditions be changed to give ethylene
<h3>
Ethylene formation</h3>
Generally the equation is
2C_2H_5OH------CH3CH_2O-CH_2CH_3+H_20
Therefore
with ethanol at 140oC
The product is diethyl ethen
The reaction at 170 ethylene will give
C_2H_5OH-------CH_2=CH_2+H_2O( at a condition of H_2SO4 as catalyst and temp 170)
Therefore
The the liquid is
For more information on Ethylene visit
brainly.com/question/20117360
Answer:
The magnesium atom loses 2 electron to the 2 atoms of chlorine. The 7 valency electrons of each chlorine atom will now be 8 to attain stable configuration. The final compound is written as MgCl2.
Explanation:
Ionic compounds are compound formed from the transfer of electron(s). One atom of the element loses electron(s) while the other atom gains electron(s).
The compound Magnesium chloride is an ionic compound . The bond between an atom of magnesium and 2 atoms of chlorine is an ionic bonding.
The valency electron of magnesium is 2 electron , for the atom of magnesium to attain octet rule, it will easily lose it 2 electrons to the chlorine atoms.
The chlorine atom on the other hand has 7 valency electrons, to attain octet configuration it will most likely gain 1 electron to become stable.
The magnesium atom loses 2 electron to the 2 atoms of chlorine. The 7 valency electrons of each chlorine atom will now be 8 to attain stable configuration. The final compound is written as MgCl2.