Ionic compounds are formed between oppositely charged ions.
A binary ionic compound is composed of ions of two different elements - one of which is a positive ion(metal), and the other is negative ion (nonmetal).
To write the empirical formula of binary ionic compound we must remember that one ion should be positive and other ion should be negative, then only the correct formula should be written. To write the empirical formula the charges of opposite ions should be criss-crossed.
First empirical formula of binary ionic compound is written between
First Formula would be 
Second empirical formula is between 
Second Formula would be 
Note : When the subscript are same they get cancel out, so
would be written as 
Third empirical formula is between 
Third Formula would be :
Forth empirical formula is between 
Forth Formula would be :
or 
Note- The subscript will be simplified and the formula will be written as
.
The empirical formula of four binary ionic compounds are : 
Answer:
Lowering the temperature typically reduces the significance of the decrease in entropy. That makes the Gibbs Free energy of the reaction more negative. As a result, the reaction becomes more favorable overall.
Explanation:
In an addition reaction there's a decrease in the number of particles. Consider the hydrogenation of ethene as an example.
.
When
is added to
(ethene) under heat and with the presence of a catalyst,
(ethane) would be produced.
Note that on the left-hand side of the equation, there are two gaseous molecules. However, on the right-hand side there's only one gaseous molecule. That's a significant decrease in entropy. In other words,
.
The equation for the change in Gibbs Free Energy for a particular reaction is:
.
For a particular reaction, the more negative
is, the more spontaneous ("favorable") the reaction would be.
Since typically
for addition reactions, the "entropy term" of it would be positive. That's not very helpful if the reaction needs to be favorable.
(absolute temperature) is always nonnegative. However, lowering the temperature could help bring the value of
Answer:
pH = 13.1
Explanation:
Hello there!
In this case, according to the given information, we can set up the following equation:

Thus, since there is 1:1 mole ratio of HCl to KOH, we can find the reacting moles as follows:

Thus, since there are less moles of HCl, we calculate the remaining moles of KOH as follows:

And the resulting concentration of KOH and OH ions as this is a strong base:
![[KOH]=[OH^-]=\frac{0.00576mol}{0.012L+0.032L}=0.131M](https://tex.z-dn.net/?f=%5BKOH%5D%3D%5BOH%5E-%5D%3D%5Cfrac%7B0.00576mol%7D%7B0.012L%2B0.032L%7D%3D0.131M)
And the resulting pH is:

Regards!
Answer:
Explanation:
A substance that produces an excess of hydroxide ion (-OH) in aqueous solution.
This is an arrhenius Base
According to the arrhenius theory, a base is a substance that combines with water to produce excess hydroxide ions, OH⁻ in an aqeous solution. Examples are :
- Sodium hydroxide NaOH
- Potassium hydroxide KOH
A substance that produces an excess of hydrogen ion (H+) in aqueous solution
This is an arrhenius Acid
An arrhenius acid is a substance that reacts with water to produce excess hydrogen ions in aqueous solutions.
Examples are;
- Hydrochloric acid HCl
- Hydroiodic acid HI
- Hydrobromic acid HBr
Answer:
Please find the definition and further explanation below
Explanation:
Based on the ability for the solvent (liquid substance) to dissolve a solute (solid substance), a solution can either be unsaturated, saturated or supersaturated. A SATURATED SOLUTION is that which contains the maximum amount of solute a solvent can possibly dissolve.
In other words, a saturated solution can no longer dissolve anymore solute, and hence, any further solute added forms crystals or makes the solution supersaturated.