Answer:
Covalent bonds
Explanation:
A water molecule consists of two atoms of hydrogen linked by covalent bonds to the same atom of oxygen. Atoms of oxygen are electronegative and attract the shared electrons in their covalent bonds.
Because they usually are weak.
(:
Answer:
A; 
Explanation:
The best way to start solving this problem is to start with the molecule with the most atoms. Since there are 12 carbons on the left, you need 12 on the right so 12 would need to be placed in front of carbon dioxide. Also you need 22 hydrogens and in each molecule of water, there are two hydrogen molecules so you need 11 molecules of water. After balancing you find that you need 24 oxygen on the left so you place the coeffecient 12 in front of the oxygen molecule.
Answer:
c = 4
Explanation:
In general, for the reaction
a A + b B ⇒ c C + d D
the rate is given by:
rate = - 1/a ΔA/Δt = - 1/b ΔB/Δt = + 1/c ΔC/Δt = + 1/d ΔD/Δt
this is done so as to express the rate in a standarized way which is the same to all the reactants and products irrespective of their stoichiometric coefficients.
For this question in particular we know the coefficient of A and need to determine the coefficient c.
- 1/2 ΔA/Δt = + 1/c ΔC/Δt
- 1/2 (-0.0080 ) = + 1/c ( 0.0160 mol L⁻¹s⁻¹ )
0.0040 mol L⁻¹s⁻¹ c = 0.0160 mol L⁻¹s⁻¹
∴ c = 0.0160 / 0.0040 = 4
The answer is C. increasing the temperature of the liquid.
Increasing the temperature of the liquid also means that you are providing energy to the liquid, which makes the molecules overcome intermolecular attractive forces, move more constantly, and become gas molecules.
Hope this would help~