Reactives
-> Products
CuO
and water are products.
I
found this reaction which has CuO and water as products: decomposition of
Cu(OH)2.
Cu(OH)2
-> CuO + H2O
Stoichiometry calculus involve the mole
proportions you can see in the reaction: When 1 mole of Cu(OH)2 reacts, 1 mole of
CuO and 1 mole of H2O are formed.
Considering
the molar masses:
Cu(OH)2
= 83.56 g/mol
CuO
= 79.545 g/mol
H2O
= 18.015 g/mol
Then:
When 83.56 g of Cu(OH)2 react, 79.545 g of CuO and 18.015 g H2O are formed.
You
should use that numbers in the rule of three:
79.545
g CuO __________18.015 g water
3.327
g CuO__________ x =3.327*18.015 /79.545 g water
x= 0.7535 g water
Answer:
Sit by the fire to warm up
Explanation:
Answer:
The structure is given in attached file.
Explanation:
Explanation
2-bromocyclopentamine (Figure attached) is a synthetic compound which is synthesized by substitution reaction of cyclopentamine and hydrobromide. Its molecular formula and molecular mass are C5H10NBr and 164.05 mol/g respectively. It is a very reactive compound so it doesn’t available in pure form, it is present in market as a mixture of 2-bromocyclopentamine and Hydrobromide.
Properties
:
Its boiling point is 115 0C
Its melting point is – 75 oC
It is highly flammable
It is highly toxic
It is irritant
It is corrosive in nature
Explanation:
Crystallography. an arrangement in space of isolated points (lattice points ) in a regular pattern, showing the positions of atoms, molecules, or ions in the structure of a crystal.
If an atom experiences sufficient thermal activation, it can move to a neighboring lattice position.4 If the vibration frequency of the atom is v and the atom has Z nearest neighbors, the total number of jump attempts is vZ. However, only a small fraction of the attempts will be successful, with a probability depending on the ratio between the necessary activation energy for a single jump QD and the thermal activation kBT. The effective jump frequency ΓD is then
(5.6)
With each successful jump, the atom travels one atomic distance λ and the total traveling distance in unit time is thus ΓDλ. Substituting the jump frequency ΓD into the expression for the root mean square displacement of a random walker [equation (5.5)] and using the spatial coordinate r leads to