The answer is D. 64. Have a nice day!
All I know is they can’t be parallel because they don’t have the same gradient. I don’t think they are perpendicular either but don’t fully trust me on that
Step-by-step explanation:
idk the answer but find the area of a circle with the radius of 45 m and then find the area of the rectangle then add them together.
The simplified form of the expression is ![x^{-45} y^{-42}](https://tex.z-dn.net/?f=x%5E%7B-45%7D%20y%5E%7B-42%7D)
<h3>Simplifying an expression</h3>
From the question, we are to simplify the given expression
The given expression is
![\frac{x^{8}y^{-26} }{x^{14}y^{-5} } \times x^{-39} y^{-21}](https://tex.z-dn.net/?f=%5Cfrac%7Bx%5E%7B8%7Dy%5E%7B-26%7D%20%20%7D%7Bx%5E%7B14%7Dy%5E%7B-5%7D%20%20%7D%20%5Ctimes%20x%5E%7B-39%7D%20y%5E%7B-21%7D)
The expression can be simplified as shown below
![\frac{x^{8}y^{-26} }{x^{14}y^{-5} } \times x^{-39} y^{-21}](https://tex.z-dn.net/?f=%5Cfrac%7Bx%5E%7B8%7Dy%5E%7B-26%7D%20%20%7D%7Bx%5E%7B14%7Dy%5E%7B-5%7D%20%20%7D%20%5Ctimes%20x%5E%7B-39%7D%20y%5E%7B-21%7D)
![\frac{x^{8} \times x^{-39} \times y^{-26} \times y^{-21} }{x^{14} \times y^{-5} }](https://tex.z-dn.net/?f=%5Cfrac%7Bx%5E%7B8%7D%20%5Ctimes%20x%5E%7B-39%7D%20%5Ctimes%20%20y%5E%7B-26%7D%20%5Ctimes%20%20y%5E%7B-21%7D%20%20%7D%7Bx%5E%7B14%7D%20%5Ctimes%20y%5E%7B-5%7D%20%20%7D)
![\frac{x^{8+-39} \times y^{-26+-21} }{x^{14} \times y^{-5} }](https://tex.z-dn.net/?f=%5Cfrac%7Bx%5E%7B8%2B-39%7D%20%5Ctimes%20%20y%5E%7B-26%2B-21%7D%20%20%7D%7Bx%5E%7B14%7D%20%5Ctimes%20y%5E%7B-5%7D%20%20%7D)
![\frac{x^{8-39} \times y^{-26-21} }{x^{14} \times y^{-5} }](https://tex.z-dn.net/?f=%5Cfrac%7Bx%5E%7B8-39%7D%20%5Ctimes%20%20y%5E%7B-26-21%7D%20%20%7D%7Bx%5E%7B14%7D%20%5Ctimes%20y%5E%7B-5%7D%20%20%7D)
![\frac{x^{-31} \times y^{-47} }{x^{14} \times y^{-5} }](https://tex.z-dn.net/?f=%5Cfrac%7Bx%5E%7B-31%7D%20%5Ctimes%20%20y%5E%7B-47%7D%20%20%7D%7Bx%5E%7B14%7D%20%5Ctimes%20y%5E%7B-5%7D%20%20%7D)
Then,
![\frac{x^{-31} }{x^{14} } \times \frac{ y^{-47} }{ y^{-5} }](https://tex.z-dn.net/?f=%5Cfrac%7Bx%5E%7B-31%7D%20%7D%7Bx%5E%7B14%7D%20%7D%20%5Ctimes%20%5Cfrac%7B%20y%5E%7B-47%7D%20%7D%7B%20y%5E%7B-5%7D%20%7D)
![x^{-31-14} \times y^{-47--5}](https://tex.z-dn.net/?f=x%5E%7B-31-14%7D%20%5Ctimes%20y%5E%7B-47--5%7D)
![x^{-31-14} \times y^{-47+5}](https://tex.z-dn.net/?f=x%5E%7B-31-14%7D%20%5Ctimes%20y%5E%7B-47%2B5%7D)
![x^{-45} \times y^{-42}](https://tex.z-dn.net/?f=x%5E%7B-45%7D%20%5Ctimes%20y%5E%7B-42%7D)
![x^{-45} y^{-42}](https://tex.z-dn.net/?f=x%5E%7B-45%7D%20y%5E%7B-42%7D)
Hence, the simplified form of the expression is ![x^{-45} y^{-42}](https://tex.z-dn.net/?f=x%5E%7B-45%7D%20y%5E%7B-42%7D)
Learn more on Simplifying an expression here: brainly.com/question/2320607
#SPJ1
First step of a synthetic divison is that we need to carry down the leading coefficient. Here the leading coefficient is 2. So, carry down 2 at the bottom.
Next step is to multiply the divisor -3 with this carry down number 2. So, we have got 3*(-2)= -6 which will place atthe bottom of the next coefficient 4.
Next step is to add this column.
Now repeat the same method again till the last colum.
At the end we have got 0 after the addition. Which means the remainder is 0.
So, the quotient is 2x^2-2x+2.