Answer:

Explanation:
Here, we want to use the factor theorem to check if the given linear expression is a factor of the binomial
Now, according to the factor theorem, a factor of a polynomial would leave no remainder when divided by it
Mathematically, it means when we substitute the factor value into the polynomial, it is expected that the remainder is zero is the substituted is a factor of the polynomial
We set x-2 to zero:

Now, we substitute 2 into the polynomial as follows:

There is a remainder of -28 and thus, the linear factor is not a factor of the binomial
Answer:
8)5.1*10⁶
9)6.98*10 to the power of -6
10) 3.000052*10⁰
11)0.006548
Answer:
Step-by-step explanation:
lets have one side =a
P=3a+a+(17+a)=52
P=5a+17=52
5a=52-17
5a=35
a=7
second side=21
third side=24
Answer:
its d
Step-by-step explanation:
he did one task in 2.25 mins so multiply by 10
Answer:
1. Opposite
2. angle-side-angle criterion
Step-by-step explanation:
Since ABCD is a parallelogram, the two pairs of <u>(opposite)</u> sides (AB¯ and CD¯, as well as AD¯ and BC¯) are congruent. Then, since ∠9 and ∠11 are vertical angles, it can be concluded that ∠9≅∠11. Since ABCD is a parallelogram, AB¯∥CD¯. Since ∠2 and ∠5 are alternate interior angles along these parallel lines, the Alternate Interior Angles Theorem allows that ∠2≅∠5. Since two angles of △AEB are congruent to two angles of △CED, the Third Angles Theorem supports that ∠8≅∠3. Therefore, using the <u>(angle-side-angle criterion)</u>, it can be stated that △AEB≅△CED. Then, applying the definition of congruent triangles, it can be stated that AE¯≅CE¯, which makes E the midpoint of AC¯. Use a similar argument to prove that △AED≅△CEB; then it can be concluded that E is also the midpoint of BD¯. Since the midpoint of both line segments is the same point, the segments bisect each other by definition. Match each number (1 and 2) with the word or phrase that correctly fills in the corresponding blank in the proof.
A parallelogram posses the following features:
1. The opposite sides are parallel.
2. The opposite sides are congruent.
3. It has supplementary consecutive angles.
4. The diagonals bisect each other.