Answer:
Step-by-step explanation:
The picture is below of how to separate this into 2 different regions, which you have to because it's not continuous over the whole function. It "breaks" at x = 2. So the way to separate this is to take the integral from x = 0 to x = 2 and then add it to the integral for x = 2 to x = 3. In order to integrate each one of those "parts" of that absolute value function we have to determine the equation for each line that makes up that part.
For the integral from [0, 2], the equation of the line is -3x + 6;
For the integral from [2, 3], the equation of the line is 3x - 6.
We integrate then:
and
sorry for the odd representation; that's as good as it gets here!
Using the First Fundamental Theorem of Calculus, we get:
(6 - 0) + (-4.5 - (-6)) = 6 + 1.5 = 7.5
Answer:
{-3, -1, 1}
Step-by-step explanation:
Zeros refer to x-intercepts. X-intercepts are x values when y = 0. You can tell where they are by looking at where the line passes the x-axis.
Therefore, {-3, -1, 1} are the zeros.
Answer:
17
Step-by-step explanation:
Here in this question for finding the numbers that will divide 398, 436 and 542 leaving remainder 7, 11 and 15 respectively we have to first subtract the remainder of the following. By this step we find the highest common factor of the numbers.
And then the required number is the HCF of the following numbers that are formed when the remainder are subtracted from them.
Clearly, the required number is the HCF of the numbers 398−7=391,436−11=425, and, 542−15=527
We will find the HCF of 391, 425 and 527 by prime factorization method.
391=17×23425=52×17527=17×31
Hence, HCF of 391, 4250 and 527 is 17 because the greatest common factor from all the numbers is 17 only.
So we can say that the largest number that will divide 398, 436 and 542 leaving remainders 7, 11 and 15 respectively is 17.
Note: - whenever we face such a type of question the key concept for solving this question is whenever in the question it is asking about the largest number it divides. You should always think about the highest common factor i.e. HCF. we have to subtract remainder because you have to find a factor that means it should be perfectly divisible so to make divisible we subtract remainder. because remainder is the extra number so on subtracting remainder it becomes divisible.