Answer:
the same as multiplying them, except you're doing the opposite: subtracting where you would have added and dividing where you would have multiplied. If the bases are the same, subtract the exponents. Remember to flip the exponent and make it positive, if needed.
Step-by-step explanation:
Answer:
Step-by-step explanation:
i do not know
We solve this by the definition of slope in analytical geometry. The definition of slope is the rise over run. In equation, that would be
m = Δy/Δx = (y₂-y₁)/(x₂-x₁)
The x-coordinates here are the t values, while the y-coordinates are the f(t) values. So, let's find the y values of the boundaries.
At t=2: f(t)= 0.25(2)²<span> − 0.5(2) + 3.5 = 3.5
Point 1 is (2, 3.5)
At t=6: </span>f(t)= 0.25(6)² − 0.5(6) + 3.5 = 9.5
Point 2 is (6, 9.5)
The slope would then be
m = (9.5-3.5)/(6-2)
m = 1.5
Hence, the slope is 1.5. Interpreting the data, the rate of change between t=2 and t=6 is 1.5 thousands per year.
Answer:
<em><u>hope</u></em><em><u> </u></em><em><u>it</u></em><em><u> </u></em><em><u>will help uh</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>