The structures of the isomers and the m/z values of their peaks are not given in the question. The complete question is provided in the attachment
Answer:
Compound 2 (2,5-dimethylhexane) will not have the peaks at 29 and 85 m/z
Explanation:
The fragmentation of molecules by electron ionization of mass spectrometer occurs according to Stevenson's Rule, which states that "The most probable fragmentation is the one that leaves the positive charge on the fragment with the lowest ionization energy". This is much like the Markovnikov's Rule in organic chemistry which has predicted the formation of most stable carbocation and the addition of hydrogen halide to it.
The mass spectra of compound 1 (2,4-dimethylhexane) will contain all the m/z values mentioned in the question. Each peak indicate towards homologous series of fragmentation product of the compound 1. The first peak can be attributed to ethyl carbocation (m/z = 29), with the increase of 14 units the next peak indicates towards propyl carbocation (m/z = 43) and onwards until molecular ion peak of 114 m/z.
Compound 2 (2,5-dimethylhexane) structure shows that the cleavage of C-C bond will not yield a stable ethyl and hexyl carbocation. Hence, no peaks will be observed at 29 and 85 m/z. The absence of these two peaks can be used to distinguish one isomer from the other.
"Ions are formed when atoms lose or gain electrons in order to fulfill the octet rule and have full outer valence electron shells. When they lose electrons, they become positively charged and are named cations. When they gain electrons, they are negatively charged and are named anions." -Study.com
Answer:
Two reactants produce two products
Explanation:
In single replacement reaction, an ionic specie is replaced by another specie according to the following general scheme
Z + XY → ZY + X
Here Z can be a metal or a non-metal. So, this removes the first given option. Also, It can be seen from the general reaction that the product is not single deducting the second option. The last option states that, "any metal replaced any other metal", this is not necessarily true. For the replacement of metal the other metal should be more reactive.
So, the only true statement about single-replacement reaction is, "two reactants produce two products"