Answer : The pressure of hydrogen gas is, 739.3 torr
Explanation :
As we are given:
Vapor pressure of water = 18.7 torr
Barometric pressure = 758 torr
Now we have to calculate the pressure of hydrogen gas.
Pressure of hydrogen gas = Barometric pressure - Vapor pressure of water
Pressure of hydrogen gas = 758 torr - 18.7 torr
Pressure of hydrogen gas = 739.3 torr
Therefore, the pressure of hydrogen gas is, 739.3 torr
Answer:
<em>Option A. It was delivered by comets that crashed into Earth's surface.</em>
Explanation:
<em><u>Uranium (U) is a chemical element with atomic number 92.</u></em>
<em />
<em>For many years, a large number of scientists have been studying the abundance and origin of the isotopes of uranium in Earth</em>. <u>According to some theories, the Earth's uranium was produced in one or more supernovae</u> (an explosive brightening of a star), in wich, the main process consists in the rapid capture of neutrons by seed nuclei at great rates. <u>Another theory proposes that uranium is created during the merger of two neutron stars</u> (neutron stars are very dense), because, when such dense bodies come closer together the gravitational force cause them to merge, producing huge amounts of hevy metals like uranium.
<u><em>Many analyses have been made of the uranium in rocks of the Earth. These measurements shows that the abundance of uranium is bigger in the crust and upper mantle of the Earth</em></u>.
So, knowing that Earth's uranium was produced through one of these processes, <u><em>the best answer is option A, the uranium was delivered by comets that crashed into Earth's surface.</em></u>
Have a nice day!
Answer:
NH₄⁺
H₂PO₄⁻
H₃O⁺
Explanation:
- An ion is an atom or molecule with a net electric charge due to the loss or gain of one or more electrons.
- Ion may be positively charged "cation" or negatively charged "anion".
- Neutral molecule has a net charge of zero.
<em>So, the species that are ions are: </em>
NH₄⁺
H₂PO₄⁻
H₃O⁺
Not 100%, but I think it would be 0.0013 because the equation for Molarity is Moles of solute(Mol)/ Liters of solution(L)