Answer:
y = 8.1
Step-by-step explanation:
y+2.9=11
Subtract 2.9 from each side
y+2.9-2.9 = 11-2.9
y =8.1
Answer:converge at 
Step-by-step explanation:
Given
Improper Integral I is given as

integration of
is -
![I=\left [ -\frac{1}{x}\right ]^{\infty}_3](https://tex.z-dn.net/?f=I%3D%5Cleft%20%5B%20-%5Cfrac%7B1%7D%7Bx%7D%5Cright%20%5D%5E%7B%5Cinfty%7D_3)
substituting value
![I=-\left [ \frac{1}{\infty }-\frac{1}{3}\right ]](https://tex.z-dn.net/?f=I%3D-%5Cleft%20%5B%20%5Cfrac%7B1%7D%7B%5Cinfty%20%7D-%5Cfrac%7B1%7D%7B3%7D%5Cright%20%5D)
![I=-\left [ 0-\frac{1}{3}\right ]](https://tex.z-dn.net/?f=I%3D-%5Cleft%20%5B%200-%5Cfrac%7B1%7D%7B3%7D%5Cright%20%5D)

so the value of integral converges at 
If a(n) = (39n^4 -506n^3 + 2341n^2 - 4610n + 3416) / 8 then
<span>a(1) = 85 </span>
<span>a(2) = 17 </span>
<span>a(3) = 19 </span>
<span>a(4) = 4 </span>
<span>a(5) = 2</span>
Answer:
(-7,4)
Step-by-step explanation:
goal: (y-k)^2=4p(x-h)
y^2-8y=4x+12 Rearranged and added 4x and 12 on both sides
y^2-8y+(-8/2)^2=4x+12+(-8/2)^2 complete square time (add same thing on both sides)
y^2-8y+(-4)^2=4x+12+(-4)^2 (simplify inside the squares)
(y-4)^2=4x+12+16 (now write the left hand side as a square)
(y-4)^2=4x+28
(y-4)^2=4(x+7) factored...
vertex is (-7,4)
Answer:
y=7x + 5
Step-by-step explanation:
sub into y= mx + c
where m = slope/gradient (7)
and c = y-value of y-intercept (5)