Answer:
Explanation has been given below.
Explanation:
- Chloroform has three polar C-Cl bonds. Methylene chloride has two polar C-Cl bonds. So it is expected that chloroform should be more polar and posses higher dipole moment than methylene chloride.
- Two factors are liable for the opposite trend observed in dipole moments of methylene chloride and chloroform.
- First one is the number of hyperconjugative hydrogen atoms present in a molecule. Hyperconjugation occurs with vacant d-orbital of Cl atom. Hyperconjugation amplifies charge separation in a molecule resulting higher dipole moment.
- Methylene chloride has two hyperconjugative hydrogen atoms and chloroform has one hyperconjugative hydrogen atom.Therefore methylene chloride should have higher charge separation as compared to chloroform.
- Second one is induction of opposite polarity in a C-Cl bond by another C-Cl bond in a molecule. Higher the opposite induction of polarity, lower the charge separation in a molecule and hence lower the dipole moment of a molecule.
- Chloroform has three C-Cl bonds and methylene chloride has two C-Cl bonds. Therefore opposite induction is higher for chloroform resulting it's lower dipole moment.
Answer:
Second step: 4-bromo-1-methyl-2-nitrobenzene.
Third step: 1.5-dibromo-2-methyl-3-nitrobenzene.
Explanation:
To solve this exercise I will use the concepts of electrophilic substitution. In these reactions, a functional group is displaced by an electrophile. In the attached image are the two main products.
This is covalent network type of solid.
For example, silicon dioxide (SiO₂) is covalent network solid with covalent bonding.
Covalent network solid is a chemical compound (or element) in which the atoms are bonded by covalent bonds in a continuous network extending throughout the material.
Silicon(IV) oxide has continuous three-dimensional network of SiO₂ units and diamond has sp3 hybridization.
This solids do not have free electrons so they are good insulators.
They have strong covalent bonds, so they melt at extremely high temperature.
Other examples are quartz, diamond, and silicon carbide.
More about network solid: brainly.com/question/15548648
#SPJ4
Use the clapeyron equation:
T in kelvin : 6.80 + 273 => 279.8 K
R = 0.082
n = 71.5 moles
P = 5.03 atm
Therefore:
P x V = n x R x T
5.03 x V = 71.5 x 0.082 x 279.8
5.03 x V = 1640.4674
V = 1640.4674 / 5.03
V = 326.13 L
hope ths helps!