Answer:
I dont speak this language sorry :(
Explanation:
Answer:
Dissolve 226 g of KCl in enough water to make 1.5 L of solution
Explanation:
1. Calculate the moles of KCl needed

2. Calculate the mass of KCl

3. Prepare the solution
- Measure out 224 g of KCl.
- Dissolve the KCl in a few hundred millilitres of distilled water.
- Add enough water to make 1.5 L of solution.
Mix thoroughly to get a uniform solution.
Answer:
Keep it simple. If all the oxygen contained in the 200 grams of potassium chlorate is produced in the decomposition, then all we have to do is find out how many grams of oxygen are there in the 200 grams. This we can do by calculating the ratio of oxygen mass to the whole. Using 39.1 for potassium, 35.45 for chlorine and 3 times 16, or 48 for the oxygen, we get a total of 122.55 grams per mole for potassium chlorate, of which 48 grams are oxygen. This ratio is 48/122.55. This ratio times the original 200 grams of the compound, gives us 78.34 grams of oxygen produced.
Explanation:
I can't actually answer this one if the empirical formula is not given. Luckily, I've found a similar problem from another website. The problem is shown in the picture attached. It shows that the empirical formula is CH₂O. Let's calculate the molar mass of the empirical formula.
Molar mass of E.F = 12 + 2(1) + 16 = 30 g/mol
Then, let's divide this to the molar mass of the molecular formula.
Molar mass of M.F/Molar mass of E.F = 180/30 = 6
Therefore, let's multiply 6 to each subscript in the empirical formula to determine the actual molecular formula.
<em>Actual molecular formula = C₆H₁₂O₆</em>
Answer:
it dependes on the material
Explanation:
what is the material