Answer:
The correct option is;
d 4400
Explanation:
The given parameters are;
The mass of the ice = 55 g
The Heat of Fusion = 80 cal/g
The Heat of Vaporization = 540 cal/g
The specific heat capacity of water = 1 cal/g
The heat required to melt a given mass of ice = The Heat of Fusion × The mass of the ice
The heat required to melt the 55 g mass of ice = 540 cal/g × 55 g = 29700 cal
The heat required to raise the temperature of a given mass ice (water) = The mass of the ice (water) × The specific heat capacity of the ice (water) × The temperature change
The heat required to raise the temperature of the ice from 0°C to 100°C = 55 × 1 × (100 - 0) = 5,500 cal
The heat required to vaporize a given mass of ice = The Heat of Vaporization × The mass of the ice
The heat required to vaporize the 55 g mass of ice at 100°C = 80 cal/g × 55 g = 4,400 cal
The total heat required to boil 55 g of ice = 29700 cal + 5,500 cal + 4,400 cal = 39,600 cal
However, we note that the heat required to vaporize the 55 g mass of ice at 100°C = 80 cal/g × 55 g = 4,400 cal.
The heat required to vaporize the 55 g mass of ice at 100°C = 4,400 cal
Answer: The element shown in the image is Helium (He).
Explanation: We are given a image of an atom having protons, neutrons and electrons.
Number of protons as shown in image = 2
Number of neutrons as shown in image = 2
Number of electron as shown in image = 2
Atomic number = Number of protons = Number of electrons
Atomic number of the element = 2
Atomic Mass = Number of protons + Number of neutrons
Atomic mass = 2 + 2 = 4
The element having Atomic number = 2 and mass number = 4 is Helium.
Element = 
Thermal energy travels<span> by conduction, convection, and radiation. It occurs when a cooler and warmer object touches each other. </span>