Answer:
The direction of the force at A and B is perpendicular to the walls of the container.
The direction of the force at C is down.
The direction of the force in D is up
The direction of the force at E is to the left.
The attached figure shows the forces exerted by the water at points A, B, C, D and E.
Explanation:
The water is in contact with the bowl and with the fish. It exercises at points A, B, C, D and E, but the direction is different from the force.
The fish has a buoyant force on the water and that direction is up. The direction of at point D is up.
The column of water on the fish has a downward force, therefore the direction of the force at point C is down. The water column to the right of the fish has a force to the left, and the direction at point E is to the left.
The water will exert a force on the walls of the container and this force at points A and B is a on the walls of the container.
You know from looking at the molecular formula<span> that one </span>molecule<span> of </span>H2SO4<span> contains 2 </span>atoms<span> of hydrogen, 1 atom of sulfur and 4 </span>atoms<span> of oxygen.</span>
Answer:
It’s 7 hours
Explanation:
You have to use the formula your teacher has given to you plug in the numbers then solve be sure to use a calculator made for physics it helps a lot :)
<h2>Answer: Resonance
</h2>
Resonance is a phenomenon that occurs when a body capable of vibrating is subjected to the action of a periodic force, whose frequency of vibration approaches the characteristic frequency of vibration (called resonance frequence) of said body. This is due a relatively small force applied in a repeated form, causing the amplitude of the oscillating system to become very large.
In other words, for the specific case of sound waves, this phenomenon occurs when the frequency of the wave that is external to the system or body coincides with the resonance frequency (characteristic frequency that reaches the maximum degree of oscillation) of this system or body.
In these circumstances the body vibrates, progressively increasing the amplitude of movement after each successive actions of the force. However, this effect can be destructive in some rigid materials.