Answer:
<h2>2.4</h2>
Explanation:
<h2><em>Hope it help mark as Brainlist</em></h2>
Answer:
The thickness is 
Explanation:
From the question we are told that
The wavelength is 
The first order of the dark fringe is 
The second order of dark fringe considered is 
Generally the condition for destructive interference is mathematically represented as

Here y is the path difference between the central maxima(i.e the origin) and any dark fringe
So the path difference between the 16th dark fringe and the 6th dark fringe is mathematically represented as

=> 
=> 
=> 
It’s doesn’t change meaning it’s 0