The circumference is 6.28
Answer:
To find the sum of a + b where a and b are rational number.
1. when a and b are natural numbers
just add them . for example a =3, b=8
then ,a + b = 11
2. When a and b are whole numbers,
simply add them . for example a= 0, b=8
a+ b = 0 + 8= 8
3. When a and b are integers
for example, a =-1 b=8,
a+ b= -1+ 8 =7,
a=-2, b= -8
a+ b= -2-8=-10
a= -6 , b=2
a+ b= -6 + 2= -4
a= 8, b= -2
a+ b= 8 +(-2) =6
I have written this because Rational number = [Integers{Whole number(Natural number)}]
now when a= Any fraction=
and b = Any fraction=
now ,

Find L.C.M of q and v
= if q and v are Co-prime , just multiply them to find their L.C.M.
For example 14,9. LCM=14×9=126
Otherwise, Find factors of q and v . Then take out common factors first and then multiply the remaining with with common factors.For example
q=12 and v=18
12 =2×2×3
18=2×3×3
common factor =2,3
non common=2,3
L.C.M= 2×2×3×3=36
Suppose LCM of q and v = r
then ,
=
= 
then ,
a + b=
Answer:
0.3431
Step-by-step explanation:
Here, it can work well to consider the seeds from the group of 18 that are NOT selected to be part of the group of 15 that are planted.
There are 18C3 = 816 ways to choose 3 seeds from 18 NOT to plant.
We are interested in the number of ways exactly one of the 10 parsley seeds can be chosen NOT to plant. For each of the 10C1 = 10 ways we can ignore exactly 1 parsley seed, there are also 8C2 = 28 ways to ignore two non-parsley seeds from the 8 that are non-parsley seeds.
That is, there are 10×28 = 280 ways to choose to ignore 1 parsley seed and 2 non-parsley seeds.
So, the probability of interest is 280/816 ≈ 0.3431.
___
The notation nCk is used to represent the expression n!/(k!(n-k)!), the number of ways k objects can be chosen from a group of n. It can be pronounced "n choose k".
Answer:
see below
Step-by-step explanation:
The odd degree (7) tells you the end behaviors are in opposite directions. The negative leading coefficient (-4) tells you the sign of y will be opposite the sign of x.
For x going toward negative infinity, y goes toward positive infinity.
For x going toward positive infinity, y goes toward negative infinity.