Answer:
Step 1-Light Dependent. CO2 and H2O enter the leaf.
Step 2- Light Dependent. Light hits the pigment in the membrane of a thylakoid, splitting the H2O into O2.
Step 3- Light Dependent. ...
Step 4-Light Dependent.
Step 5-Light independent.
Step 6-Light independent.
Answer:
1) 1.235 g.
2) 0.61 g.
Explanation:
- From the balanced equation:
<em>Al(OH)₃ + 3HCl → AlCl₃ + 3H₂O.</em>
1.0 mol of Al(OH)₃ reacts with 3.0 moles of HCl to produce 1.0 mol of AlCl₃ and 3.0 moles of H₂O.
<em>1) How many grams of HCl can a tablet with 0.880 g of Al(OH)₃ consume? </em>
- To calculate the amount of HCl needed to consume 0.880 g of Al(OH)₃, we need to calculate the no. of moles of Al(OH)₃:
no. of moles of Al(OH)₃ = mass/molar mass = (0.880 g)/(78.0 g/mol) = 1.13 x 10⁻² mol.
∵ Every 1.0 mol of Al(OH)₃ needs 3.0 moles of HCl to be consumed.
∴ 1.13 x 10⁻² mol of Al(OH)₃ needs (3 x 1.13 x 10⁻² = 3.385 x 10⁻² mol) of HCl.
The no. of grams of HCl = no. of moles of HCl x molar mass of HCl = (3.385 x 10⁻² mol)(36.5 g/mol) = 1.235 g.
<em>2) How much H₂O?</em>
∵ Every 1.0 mol of Al(OH)₃ produces 3.0 moles of H₂O.
∴ 1.13 x 10⁻² mol of Al(OH)₃ produces (3 x 1.13 x 10⁻² = 3.385 x 10⁻² mol) of H₂O.
<em>The no. of grams of H₂O = no. of moles of H₂O x molar mass of H₂O </em>= (3.385 x 10⁻² mol)(18.0 g/mol) = <em>0.6092 g ≅ 0.61 g.</em>
Answer:
The percent by mass of sodium chloride in the broth is 0.1875 %
Explanation:
Our first step is transforming the sodium chloride figure from mg to g
450mg x 1g/1000 mg= 0.45g
Now, we must calculate the percentage by using the following formula:
0.45g / 240g x 100= 0.1875%
Henceforth, we can conclude that the percentage by mass of sodium chloride in the broth is 0.1875%
As far as I understand, you have to plot <span>t(v) = v/k.
According to this, you have to use a form like that </span>

, in which

.
Then you can see that the vertical-intercept is zero therefore the gradient should be is <span><span>1/k.
Do hope you will find my both answer helpful and useful. Regards!</span></span>